Enzymes are highly powerful and potent tools in nature. In this project we want to repurpose ROS producing enzymes for potential use in degradation of synthetic polymers. Candidate enzymes will be thoroughly studied to understand their structure function relationship to the fullest in order to have a solid basis for engineering approaches that ultimately yield highly efficient and stable “blockbuster” enzymes.

Background:

The degradation of biopolymers requires a suite of specific enzymes secreted by plant biomass degrading microorganisms. For synthetic polymers, especially the difficult to depolymerize polyolefines, like polyethylene or polypropylene, such specific enzymes have not been evolved by organisms yet. Instead of combining a series of enzymes with different activities, the proposed strategy involves enzymes producing reactive compounds that start depolymerization reactions of recalcitrant polymers. Bacterial ROS producing oxidoreductases will act as a starting point in this project.

Aims:

In this project, enzymes producing ROS species, hypohalous acids and other radicals will be screened, produced, characterized and engineered. Special focus will be put on the thermal and turnover stability of these “blockbuster” enzymes and various methods will be used to engineer stable producers of highly reactive species. The produced enzymes will be distributed in the COE to be studied with biopolymers in Program 1 and polyolefines in Program 3.

Methods:

- Genomic-, microorganism- and activity screening methods

- Enzyme expression and purification

- Biochemical characterization (protein analysis and kinetic measurements)

- Protein engineering methods

- Application in processes and process engineering

Where to apply:

https://www.circularbioengineering.at/

 

Nach oben scrollen