• Skip to content (access key 1)
  • Skip to search (access key 7)
FWF — Austrian Science Fund
  • Go to overview page Discover

    • Research Radar
    • Discoveries
      • Emmanuelle Charpentier
      • Adrian Constantin
      • Monika Henzinger
      • Ferenc Krausz
      • Wolfgang Lutz
      • Walter Pohl
      • Christa Schleper
      • Anton Zeilinger
    • scilog Magazine
    • Awards
      • FWF Wittgenstein Awards
      • FWF START Awards
    • excellent=austria
      • Clusters of Excellence
      • Emerging Fields
    • In the Spotlight
      • 40 Years of Erwin Schrödinger Fellowships
      • Quantum Austria
    • Dialogs and Talks
      • think.beyond Summit
    • E-Book Library
  • Go to overview page Funding

    • Portfolio
      • excellent=austria
        • Clusters of Excellence
        • Emerging Fields
      • Projects
        • Principal Investigator Projects
        • Principal Investigator Projects International
        • Clinical Research
        • 1000 Ideas
        • Arts-Based Research
        • FWF Wittgenstein Award
      • Careers
        • ESPRIT
        • FWF ASTRA Awards
        • Erwin Schrödinger
        • Elise Richter
        • Elise Richter PEEK
        • doc.funds
        • doc.funds.connect
      • Collaborations
        • Specialized Research Groups
        • Special Research Areas
        • Research Groups
        • International – Multilateral Initiatives
        • #ConnectingMinds
      • Communication
        • Top Citizen Science
        • Science Communication
        • Book Publications
        • Digital Publications
        • Open-Access Block Grant
      • Subject-Specific Funding
        • AI Mission Austria
        • Belmont Forum
        • ERA-NET HERA
        • ERA-NET NORFACE
        • ERA-NET QuantERA
        • ERA-NET TRANSCAN
        • Alternative Methods to Animal Testing
        • European Partnership Biodiversa+
        • European Partnership ERA4Health
        • European Partnership ERDERA
        • European Partnership EUPAHW
        • European Partnership FutureFoodS
        • European Partnership OHAMR
        • European Partnership PerMed
        • European Partnership Water4All
        • Gottfried and Vera Weiss Award
        • netidee SCIENCE
        • Herzfelder Foundation Projects
        • Quantum Austria
        • Rückenwind Funding Bonus
        • Zero Emissions Award
      • International Collaborations
        • Belgium/Flanders
        • Germany
        • France
        • Italy/South Tyrol
        • Japan
        • Luxembourg
        • Poland
        • Switzerland
        • Slovenia
        • Taiwan
        • Tyrol–South Tyrol–Trentino
        • Czech Republic
        • Hungary
    • Step by Step
      • Find Funding
      • Submitting Your Application
      • International Peer Review
      • Funding Decisions
      • Carrying out Your Project
      • Closing Your Project
      • Further Information
        • Integrity and Ethics
        • Inclusion
        • Applying from Abroad
        • Personnel Costs
        • PROFI
        • Final Project Reports
        • Final Project Report Survey
    • FAQ
      • Project Phase PROFI
        • Accounting for Approved Funds
        • Labor and Social Law
        • Project Management
      • Project Phase Ad Personam
        • Accounting for Approved Funds
        • Labor and Social Law
        • Project Management
      • Expiring Programs
        • FWF START Awards
  • Go to overview page About Us

    • Mission Statement
    • FWF Video
    • Values
    • Facts and Figures
    • Annual Report
    • What We Do
      • Research Funding
        • Matching Funds Initiative
      • International Collaborations
      • Studies and Publications
      • Equal Opportunities and Diversity
        • Objectives and Principles
        • Measures
        • Creating Awareness of Bias in the Review Process
        • Terms and Definitions
        • Your Career in Cutting-Edge Research
      • Open Science
        • Open Access Policy
          • Open Access Policy for Peer-Reviewed Publications
          • Open Access Policy for Peer-Reviewed Book Publications
          • Open Access Policy for Research Data
        • Research Data Management
        • Citizen Science
        • Open Science Infrastructures
        • Open Science Funding
      • Evaluations and Quality Assurance
      • Academic Integrity
      • Science Communication
      • Philanthropy
      • Sustainability
    • History
    • Legal Basis
    • Organization
      • Executive Bodies
        • Executive Board
        • Supervisory Board
        • Assembly of Delegates
        • Scientific Board
        • Juries
      • FWF Office
    • Jobs at FWF
  • Go to overview page News

    • News
    • Press
      • Logos
    • Calendar
      • Post an Event
      • FWF Informational Events
    • Job Openings
      • Enter Job Opening
    • Newsletter
  • Discovering
    what
    matters.

    FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

    SOCIAL MEDIA

    • LinkedIn, external URL, opens in a new window
    • Twitter, external URL, opens in a new window
    • Facebook, external URL, opens in a new window
    • Instagram, external URL, opens in a new window
    • YouTube, external URL, opens in a new window

    SCILOG

    • Scilog — The science magazine of the Austrian Science Fund (FWF)
  • elane login, external URL, opens in a new window
  • Scilog external URL, opens in a new window
  • de Wechsle zu Deutsch

  

Deep learning of chemical reactions

Deep learning of chemical reactions

Esther Heid (ORCID: 0000-0002-8404-6596)
  • Grant DOI 10.55776/STA192
  • Funding program FWF START Award
  • Status ongoing
  • Start October 1, 2024
  • End September 30, 2027
  • Funding amount € 200,000
  • E-mail

Disciplines

Chemistry (100%)

Keywords

    Deep Learning, Chemical reactions, Graph-convolutional neural networks, Graph transformers, Machine Learning

Abstract

Chemical reactions are all around us, forming the basis of life. For example, we digest food and breathe air, convert energy stored in molecules to muscle movement, or transfer and process information using reactions. A chemical reaction transforms one or more educts into one or more products. Using quantum-mechanical calculations, reactions can be studied in detail, for example how the atoms in the educts iteratively move until the product is formed. However, such calculations are prohibitively slow to use on a larger scale. The project aims to adapt generative machine learning models to predict the atomic configurations along reaction pathways in the gas phase, as well as for organo- and biocatalytic reactions, i.e., reactions that are catalyzed by either small organic molecules or enzymes. Here, architectures prominent in other fields of research, such as diffusion models for image generation, will be adapted for chemical research questions. The trained models can then be used in larger machine learning pipelines to predict reaction properties, helping to understand, model, and optimize diverse chemical reactions on the computer.

Research institution(s)
  • Technische Universität Wien - 100%

Research Output

  • 1 Publications
Publications
  • 2025
    Title GoFlow: Efficient Transition State Geometry Prediction with Flow Matching and E(3)-Equivariant Neural Networks
    DOI 10.26434/chemrxiv-2025-bk2rh
    Type Preprint
    Author Galustian L

Discovering
what
matters.

Newsletter

FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

Contact

Austrian Science Fund (FWF)
Georg-Coch-Platz 2
(Entrance Wiesingerstraße 4)
1010 Vienna

office(at)fwf.ac.at
+43 1 505 67 40

General information

  • Job Openings
  • Jobs at FWF
  • Press
  • Philanthropy
  • scilog
  • FWF Office
  • Social Media Directory
  • LinkedIn, external URL, opens in a new window
  • Twitter, external URL, opens in a new window
  • Facebook, external URL, opens in a new window
  • Instagram, external URL, opens in a new window
  • YouTube, external URL, opens in a new window
  • Cookies
  • Whistleblowing/Complaints Management
  • Accessibility Statement
  • Data Protection
  • Acknowledgements
  • Social Media Directory
  • © Österreichischer Wissenschaftsfonds FWF
© Österreichischer Wissenschaftsfonds FWF