• Skip to content (access key 1)
  • Skip to search (access key 7)
FWF — Austrian Science Fund
  • Go to overview page Discover

    • Research Radar
      • Research Radar Archives 1974–1994
    • Discoveries
      • Emmanuelle Charpentier
      • Adrian Constantin
      • Monika Henzinger
      • Ferenc Krausz
      • Wolfgang Lutz
      • Walter Pohl
      • Christa Schleper
      • Anton Zeilinger
    • Impact Stories
      • Verena Gassner
      • Wolfgang Lechner
      • Georg Winter
    • scilog Magazine
    • Austrian Science Awards
      • FWF Wittgenstein Awards
      • FWF ASTRA Awards
      • FWF START Awards
      • Award Ceremony
    • excellent=austria
      • Clusters of Excellence
      • Emerging Fields
    • In the Spotlight
      • 40 Years of Erwin Schrödinger Fellowships
      • Quantum Austria
    • Dialogs and Talks
      • think.beyond Summit
    • Knowledge Transfer Events
    • E-Book Library
  • Go to overview page Funding

    • Portfolio
      • excellent=austria
        • Clusters of Excellence
        • Emerging Fields
      • Projects
        • Principal Investigator Projects
        • Principal Investigator Projects International
        • Clinical Research
        • 1000 Ideas
        • Arts-Based Research
        • FWF Wittgenstein Award
      • Careers
        • ESPRIT
        • FWF ASTRA Awards
        • Erwin Schrödinger
        • doc.funds
        • doc.funds.connect
      • Collaborations
        • Specialized Research Groups
        • Special Research Areas
        • Research Groups
        • International – Multilateral Initiatives
        • #ConnectingMinds
      • Communication
        • Top Citizen Science
        • Science Communication
        • Book Publications
        • Digital Publications
        • Open-Access Block Grant
      • Subject-Specific Funding
        • AI Mission Austria
        • Belmont Forum
        • ERA-NET HERA
        • ERA-NET NORFACE
        • ERA-NET QuantERA
        • ERA-NET TRANSCAN
        • Alternative Methods to Animal Testing
        • European Partnership Biodiversa+
        • European Partnership ERA4Health
        • European Partnership ERDERA
        • European Partnership EUPAHW
        • European Partnership FutureFoodS
        • European Partnership OHAMR
        • European Partnership PerMed
        • European Partnership Water4All
        • Gottfried and Vera Weiss Award
        • netidee SCIENCE
        • Herzfelder Foundation Projects
        • Quantum Austria
        • Rückenwind Funding Bonus
        • WE&ME Award
        • Zero Emissions Award
      • International Collaborations
        • Belgium/Flanders
        • Germany
        • France
        • Italy/South Tyrol
        • Japan
        • Luxembourg
        • Poland
        • Switzerland
        • Slovenia
        • Taiwan
        • Tyrol–South Tyrol–Trentino
        • Czech Republic
        • Hungary
    • Step by Step
      • Find Funding
      • Submitting Your Application
      • International Peer Review
      • Funding Decisions
      • Carrying out Your Project
      • Closing Your Project
      • Further Information
        • Integrity and Ethics
        • Inclusion
        • Applying from Abroad
        • Personnel Costs
        • PROFI
        • Final Project Reports
        • Final Project Report Survey
    • FAQ
      • Project Phase PROFI
        • Accounting for Approved Funds
        • Labor and Social Law
        • Project Management
      • Project Phase Ad Personam
        • Accounting for Approved Funds
        • Labor and Social Law
        • Project Management
      • Expiring Programs
        • Elise Richter and Elise Richter PEEK
        • FWF START Awards
  • Go to overview page About Us

    • Mission Statement
    • FWF Video
    • Values
    • Facts and Figures
    • Annual Report
    • What We Do
      • Research Funding
        • Matching Funds Initiative
      • International Collaborations
      • Studies and Publications
      • Equal Opportunities and Diversity
        • Objectives and Principles
        • Measures
        • Creating Awareness of Bias in the Review Process
        • Terms and Definitions
        • Your Career in Cutting-Edge Research
      • Open Science
        • Open-Access Policy
          • Open-Access Policy for Peer-Reviewed Publications
          • Open-Access Policy for Peer-Reviewed Book Publications
          • Open-Access Policy for Research Data
        • Research Data Management
        • Citizen Science
        • Open Science Infrastructures
        • Open Science Funding
      • Evaluations and Quality Assurance
      • Academic Integrity
      • Science Communication
      • Philanthropy
      • Sustainability
    • History
    • Legal Basis
    • Organization
      • Executive Bodies
        • Executive Board
        • Supervisory Board
        • Assembly of Delegates
        • Scientific Board
        • Juries
      • FWF Office
    • Jobs at FWF
  • Go to overview page News

    • News
    • Press
      • Logos
    • Calendar
      • Post an Event
      • FWF Informational Events
    • Job Openings
      • Enter Job Opening
    • Newsletter
  • Discovering
    what
    matters.

    FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

    SOCIAL MEDIA

    • LinkedIn, external URL, opens in a new window
    • , external URL, opens in a new window
    • Facebook, external URL, opens in a new window
    • Instagram, external URL, opens in a new window
    • YouTube, external URL, opens in a new window

    SCILOG

    • Scilog — The science magazine of the Austrian Science Fund (FWF)
  • elane login, external URL, opens in a new window
  • Scilog external URL, opens in a new window
  • de Wechsle zu Deutsch

  

Advanced Entanglement from Quantum Dots

Advanced Entanglement from Quantum Dots

Gregor Weihs (ORCID: 0000-0003-2260-3008)
  • Grant DOI 10.55776/I4380
  • Funding program Principal Investigator Projects International
  • Status ended
  • Start September 1, 2020
  • End March 31, 2024
  • Funding amount € 402,001
  • Project website
  • dc

DACH: Österreich - Deutschland - Schweiz

Disciplines

Physics, Astronomy (100%)

Keywords

    Time-Bin Entanglement, Quantum Entanglement, Quantum Dots

Abstract Final report

Communication is about to be revolutionized by the usage of quantum mechanics, known as the second quantum revolution. At the heart of this revolution are the exploitation of entangled states, which do not have any classical analogue. Therefore, the efficient creation of entangled states is crucial in this endeavor and the race of the search for the ideal source of entangled photon pairs is at its peak. The main goal of our project is to bring forward semiconductor quantum dots as usable source of entangled photon pairs. A new angle is added by a fundamentally new ingredient, namely the dark exciton states, for the controlled biexciton generation and subsequently the deterministic generation of time-bin entangled photons. We will consider advanced creation of time-bin entangled photon states, as well as multilevel entanglement and multiphoton entanglement using single quantum dots and quantum dot molecules. We aim to achieve these goals by a strong joint theoretical and experimental effort to turn the potential of quantum dots as entangled photon source into a useful set of tools for quantum communication, eventually leading to the construction of usable quantum repeaters.

Quantum physics opens up new possibilities compared to classical technologies and is thus revolutionizing our communication technology. The basis for this revolution are entangled states, which have no classical analogue. Therefore, the powerful generation of entangled states is essential for this effort and researchers worldwide are searching for ideal sources of entangled photon pairs. The aim of our project was to develop semiconductor quantum dots as a source for entangled photon pairs. A quantum dot is a semiconductor structure just a few nanometers in size that traps electrons and behaves like an atom. The main difference to conventional quantum light sources is that a quantum dot emits only one photon pair per excitation. This has already been shown for entanglement in the polarization (direction of oscillation) of photons, but polarization is unstable in in optical fibers. Our project therefore aimed to create entanglement in time. For this purpose, we needed so-called dark states of the quantum dots as new building blocks, which can be used for a controlled excitation of optically active states in the quantum dot and thus enable a deterministic generation of time-entangled photon pairs. To find and control these dark states, we developed completely new and groundbreaking methods to excite the quantum dots with laser light in close cooperation with the theory team in the project. These methods are based on specially structured laser pulses, which make it possible to achieve reliable excitation even with fluctuations in laser power and wavelength. Finally, we were also successful in exciting the dark states and we were able to bring a quantum dot into the dark state and back again in a controlled fashion. While we have only been able to show time entanglement to a limited extent so far, all doors are now open to us with the new excitation methods. In this way, we will take the functionality of quantum dots as sources of entangled photons to a higher level and take a significant step towards the realization of the quantum repeater, the heart of any future quantum communication network.

Research institution(s)
  • Universität Innsbruck - 90%
  • Universität Linz - 10%
Project participants
  • Armando Rastelli, Universität Linz , associated research partner
International project participants
  • Dan Dalacu, National Research Council of Canada - Canada
  • Philip J. Poole, National Research Council of Canada - Canada
  • Christian Schneider, Julius-Maximilians-Universität Würzburg - Germany
  • Sven Höfling, Julius-Maximilians-Universität Würzburg - Germany
  • Vollrath Martin Axt, Universität Bayreuth - Germany
  • Doris Reiter, Westfälische Wilhelms-Universität - Germany

Research Output

  • 599 Citations
  • 45 Publications
  • 3 Datasets & models
  • 3 Disseminations
  • 1 Scientific Awards

Discovering
what
matters.

Newsletter

FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

Contact

Austrian Science Fund (FWF)
Georg-Coch-Platz 2
(Entrance Wiesingerstraße 4)
1010 Vienna

office(at)fwf.ac.at
+43 1 505 67 40

General information

  • Job Openings
  • Jobs at FWF
  • Press
  • Philanthropy
  • scilog
  • FWF Office
  • Social Media Directory
  • LinkedIn, external URL, opens in a new window
  • , external URL, opens in a new window
  • Facebook, external URL, opens in a new window
  • Instagram, external URL, opens in a new window
  • YouTube, external URL, opens in a new window
  • Cookies
  • Whistleblowing/Complaints Management
  • Accessibility Statement
  • Data Protection
  • Acknowledgements
  • Social Media Directory
  • © Österreichischer Wissenschaftsfonds FWF
© Österreichischer Wissenschaftsfonds FWF