• Skip to content (access key 1)
  • Skip to search (access key 7)
FWF — Austrian Science Fund
  • Go to overview page Discover

    • Research Radar
    • Discoveries
      • Emmanuelle Charpentier
      • Adrian Constantin
      • Monika Henzinger
      • Ferenc Krausz
      • Wolfgang Lutz
      • Walter Pohl
      • Christa Schleper
      • Anton Zeilinger
    • scilog Magazine
    • Awards
      • FWF Wittgenstein Awards
      • FWF START Awards
    • excellent=austria
      • Clusters of Excellence
      • Emerging Fields
    • In the Spotlight
      • 40 Years of Erwin Schrödinger Fellowships
      • Quantum Austria
    • Dialogs and Talks
      • think.beyond Summit
    • E-Book Library
  • Go to overview page Funding

    • Portfolio
      • excellent=austria
        • Clusters of Excellence
        • Emerging Fields
      • Projects
        • Principal Investigator Projects
        • Principal Investigator Projects International
        • Clinical Research
        • 1000 Ideas
        • Arts-Based Research
        • FWF Wittgenstein Award
      • Careers
        • ESPRIT
        • FWF ASTRA Awards
        • Erwin Schrödinger
        • Elise Richter
        • Elise Richter PEEK
        • doc.funds
        • doc.funds.connect
      • Collaborations
        • Specialized Research Groups
        • Special Research Areas
        • Research Groups
        • International – Multilateral Initiatives
        • #ConnectingMinds
      • Communication
        • Top Citizen Science
        • Science Communication
        • Book Publications
        • Digital Publications
        • Open-Access Block Grant
      • Subject-Specific Funding
        • AI Mission Austria
        • Belmont Forum
        • ERA-NET HERA
        • ERA-NET NORFACE
        • ERA-NET QuantERA
        • ERA-NET TRANSCAN
        • Alternative Methods to Animal Testing
        • European Partnership Biodiversa+
        • European Partnership ERA4Health
        • European Partnership ERDERA
        • European Partnership EUPAHW
        • European Partnership FutureFoodS
        • European Partnership OHAMR
        • European Partnership PerMed
        • European Partnership Water4All
        • Gottfried and Vera Weiss Award
        • netidee SCIENCE
        • Herzfelder Foundation Projects
        • Quantum Austria
        • Rückenwind Funding Bonus
        • Zero Emissions Award
      • International Collaborations
        • Belgium/Flanders
        • Germany
        • France
        • Italy/South Tyrol
        • Japan
        • Luxembourg
        • Poland
        • Switzerland
        • Slovenia
        • Taiwan
        • Tyrol–South Tyrol–Trentino
        • Czech Republic
        • Hungary
    • Step by Step
      • Find Funding
      • Submitting Your Application
      • International Peer Review
      • Funding Decisions
      • Carrying out Your Project
      • Closing Your Project
      • Further Information
        • Integrity and Ethics
        • Inclusion
        • Applying from Abroad
        • Personnel Costs
        • PROFI
        • Final Project Reports
        • Final Project Report Survey
    • FAQ
      • Project Phase PROFI
        • Accounting for Approved Funds
        • Labor and Social Law
        • Project Management
      • Project Phase Ad Personam
        • Accounting for Approved Funds
        • Labor and Social Law
        • Project Management
      • Expiring Programs
        • FWF START Awards
  • Go to overview page About Us

    • Mission Statement
    • FWF Video
    • Values
    • Facts and Figures
    • Annual Report
    • What We Do
      • Research Funding
        • Matching Funds Initiative
      • International Collaborations
      • Studies and Publications
      • Equal Opportunities and Diversity
        • Objectives and Principles
        • Measures
        • Creating Awareness of Bias in the Review Process
        • Terms and Definitions
        • Your Career in Cutting-Edge Research
      • Open Science
        • Open Access Policy
          • Open Access Policy for Peer-Reviewed Publications
          • Open Access Policy for Peer-Reviewed Book Publications
          • Open Access Policy for Research Data
        • Research Data Management
        • Citizen Science
        • Open Science Infrastructures
        • Open Science Funding
      • Evaluations and Quality Assurance
      • Academic Integrity
      • Science Communication
      • Philanthropy
      • Sustainability
    • History
    • Legal Basis
    • Organization
      • Executive Bodies
        • Executive Board
        • Supervisory Board
        • Assembly of Delegates
        • Scientific Board
        • Juries
      • FWF Office
    • Jobs at FWF
  • Go to overview page News

    • News
    • Press
      • Logos
    • Calendar
      • Post an Event
      • FWF Informational Events
    • Job Openings
      • Enter Job Opening
    • Newsletter
  • Discovering
    what
    matters.

    FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

    SOCIAL MEDIA

    • LinkedIn, external URL, opens in a new window
    • Twitter, external URL, opens in a new window
    • Facebook, external URL, opens in a new window
    • Instagram, external URL, opens in a new window
    • YouTube, external URL, opens in a new window

    SCILOG

    • Scilog — The science magazine of the Austrian Science Fund (FWF)
  • elane login, external URL, opens in a new window
  • Scilog external URL, opens in a new window
  • de Wechsle zu Deutsch

  

Analytic P-ideals, Banach spaces, and measure algebras

Analytic P-ideals, Banach spaces, and measure algebras

Barnabas Artur Farkas (ORCID: 0000-0002-8661-2301)
  • Grant DOI 10.55776/I5918
  • Funding program Principal Investigator Projects International
  • Status ongoing
  • Start February 1, 2022
  • End May 31, 2025
  • Funding amount € 399,928
  • Project website
  • E-mail

Weave: Österreich - Belgien - Deutschland - Luxemburg - Polen - Schweiz - Slowenien - Tschechien

Disciplines

Mathematics (100%)

Keywords

    Analytic P-Ideals, Measure Algebras, Stone spaces, Random Forcing, Universal Banach Spaces, Grothendieck spaces

Abstract

The project is focused on old as well as recently discovered interactions between classical mathematical objects of different fields such as combinatorics, set theory, algebra, geometry, and topology. Let us mention a couple of examples. How complicated can a finite set of natural numbers be? To see a less obvious example, consider the following property of such a set: It has at most as many elements as its smallest element. Although, the idea may feel ad hoc, the collection of all these sets is called the Schreier family and it played a fundamental role in the history of infinite dimensional geometry. From the many set-theoretic structures we are going to investigate in this context, perhaps ideals are the most important. They are collections of sets of natural numbers, just like the Schreier family but now we consider infinite sets as well, which are thin in some precise, analytic sense. At last but not least, we shall mention that the collection of all subsets of the plane which have area (most of them do not) form an algebraic structure but at the same time also played a crucial role in finding witnesses to Gödels first incompleteness theorem, that is, mathematical questions which cannot ever be answered. The interplay between these notions and structures has been discovered and studied for a long time, mostly because one can be constructed from another. Moreover, when doing so sometimes we obtain complete circles of many of these objects. Apart from the natural interest in such interactions be tween numerous fields of mathematics, these constructions provide us with new approaches to well-studied classical notions and hence with new tools when discussing these structures. This leads to new characterizations of sometimes basic properties; and in some specific cases, this approach even shed light on new possible ways when attacking long-standing open problems. The project is devoted to further develop and apply some of these old and new bridges between these fields, and hopefully to serve as a systematic foundation of many further research in this beautiful multidisciplinary area.

Research institution(s)
  • Universität Wien - 45%
  • Technische Universität Wien - 55%
Project participants
  • Lyubomyr Zdomskyy, Technische Universität Wien , national collaboration partner
  • Damian Sobota, Universität Wien , associated research partner
International project participants
  • Piotr Borodulin-Nadzieja - Poland, international project partner
  • Grzegorz Plebanek, University of Wroclaw - Poland

Research Output

  • 2 Publications
Publications
  • 2023
    Title MORE ON HALFWAY NEW CARDINAL CHARACTERISTICS
    DOI 10.1017/jsl.2023.62
    Type Journal Article
    Author Farkas B
    Journal The Journal of Symbolic Logic
    Pages 1-16
    Link Publication
  • 2023
    Title More on Halfway New Cardinal Characteristics
    DOI 10.48550/arxiv.2304.09698
    Type Preprint
    Author Farkas B

Discovering
what
matters.

Newsletter

FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

Contact

Austrian Science Fund (FWF)
Georg-Coch-Platz 2
(Entrance Wiesingerstraße 4)
1010 Vienna

office(at)fwf.ac.at
+43 1 505 67 40

General information

  • Job Openings
  • Jobs at FWF
  • Press
  • Philanthropy
  • scilog
  • FWF Office
  • Social Media Directory
  • LinkedIn, external URL, opens in a new window
  • Twitter, external URL, opens in a new window
  • Facebook, external URL, opens in a new window
  • Instagram, external URL, opens in a new window
  • YouTube, external URL, opens in a new window
  • Cookies
  • Whistleblowing/Complaints Management
  • Accessibility Statement
  • Data Protection
  • Acknowledgements
  • Social Media Directory
  • © Österreichischer Wissenschaftsfonds FWF
© Österreichischer Wissenschaftsfonds FWF