• Skip to content (access key 1)
  • Skip to search (access key 7)
FWF — Austrian Science Fund
  • Go to overview page Discover

    • Research Radar
    • Discoveries
      • Emmanuelle Charpentier
      • Adrian Constantin
      • Monika Henzinger
      • Ferenc Krausz
      • Wolfgang Lutz
      • Walter Pohl
      • Christa Schleper
      • Anton Zeilinger
    • scilog Magazine
    • Awards
      • FWF Wittgenstein Awards
      • FWF START Awards
    • excellent=austria
      • Clusters of Excellence
      • Emerging Fields
    • In the Spotlight
      • 40 Years of Erwin Schrödinger Fellowships
      • Quantum Austria
    • Dialogs and Talks
      • think.beyond Summit
    • E-Book Library
  • Go to overview page Funding

    • Portfolio
      • excellent=austria
        • Clusters of Excellence
        • Emerging Fields
      • Projects
        • Principal Investigator Projects
        • Principal Investigator Projects International
        • Clinical Research
        • 1000 Ideas
        • Arts-Based Research
        • FWF Wittgenstein Award
      • Careers
        • ESPRIT
        • FWF ASTRA Awards
        • Erwin Schrödinger
        • Elise Richter
        • Elise Richter PEEK
        • doc.funds
        • doc.funds.connect
      • Collaborations
        • Specialized Research Groups
        • Special Research Areas
        • Research Groups
        • International – Multilateral Initiatives
        • #ConnectingMinds
      • Communication
        • Top Citizen Science
        • Science Communication
        • Book Publications
        • Digital Publications
        • Open-Access Block Grant
      • Subject-Specific Funding
        • AI Mission Austria
        • Belmont Forum
        • ERA-NET HERA
        • ERA-NET NORFACE
        • ERA-NET QuantERA
        • ERA-NET TRANSCAN
        • Alternative Methods to Animal Testing
        • European Partnership Biodiversa+
        • European Partnership ERA4Health
        • European Partnership ERDERA
        • European Partnership EUPAHW
        • European Partnership FutureFoodS
        • European Partnership OHAMR
        • European Partnership PerMed
        • European Partnership Water4All
        • Gottfried and Vera Weiss Award
        • netidee SCIENCE
        • Herzfelder Foundation Projects
        • Quantum Austria
        • Rückenwind Funding Bonus
        • WE&ME Award
        • Zero Emissions Award
      • International Collaborations
        • Belgium/Flanders
        • Germany
        • France
        • Italy/South Tyrol
        • Japan
        • Luxembourg
        • Poland
        • Switzerland
        • Slovenia
        • Taiwan
        • Tyrol–South Tyrol–Trentino
        • Czech Republic
        • Hungary
    • Step by Step
      • Find Funding
      • Submitting Your Application
      • International Peer Review
      • Funding Decisions
      • Carrying out Your Project
      • Closing Your Project
      • Further Information
        • Integrity and Ethics
        • Inclusion
        • Applying from Abroad
        • Personnel Costs
        • PROFI
        • Final Project Reports
        • Final Project Report Survey
    • FAQ
      • Project Phase PROFI
        • Accounting for Approved Funds
        • Labor and Social Law
        • Project Management
      • Project Phase Ad Personam
        • Accounting for Approved Funds
        • Labor and Social Law
        • Project Management
      • Expiring Programs
        • FWF START Awards
  • Go to overview page About Us

    • Mission Statement
    • FWF Video
    • Values
    • Facts and Figures
    • Annual Report
    • What We Do
      • Research Funding
        • Matching Funds Initiative
      • International Collaborations
      • Studies and Publications
      • Equal Opportunities and Diversity
        • Objectives and Principles
        • Measures
        • Creating Awareness of Bias in the Review Process
        • Terms and Definitions
        • Your Career in Cutting-Edge Research
      • Open Science
        • Open Access Policy
          • Open Access Policy for Peer-Reviewed Publications
          • Open Access Policy for Peer-Reviewed Book Publications
          • Open Access Policy for Research Data
        • Research Data Management
        • Citizen Science
        • Open Science Infrastructures
        • Open Science Funding
      • Evaluations and Quality Assurance
      • Academic Integrity
      • Science Communication
      • Philanthropy
      • Sustainability
    • History
    • Legal Basis
    • Organization
      • Executive Bodies
        • Executive Board
        • Supervisory Board
        • Assembly of Delegates
        • Scientific Board
        • Juries
      • FWF Office
    • Jobs at FWF
  • Go to overview page News

    • News
    • Press
      • Logos
    • Calendar
      • Post an Event
      • FWF Informational Events
    • Job Openings
      • Enter Job Opening
    • Newsletter
  • Discovering
    what
    matters.

    FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

    SOCIAL MEDIA

    • LinkedIn, external URL, opens in a new window
    • Twitter, external URL, opens in a new window
    • Facebook, external URL, opens in a new window
    • Instagram, external URL, opens in a new window
    • YouTube, external URL, opens in a new window

    SCILOG

    • Scilog — The science magazine of the Austrian Science Fund (FWF)
  • elane login, external URL, opens in a new window
  • Scilog external URL, opens in a new window
  • de Wechsle zu Deutsch

  

Optimal adaptivity for BEM and FEM-BEM coupling

Optimal adaptivity for BEM and FEM-BEM coupling

Dirk Praetorius (ORCID: 0000-0002-1977-9830)
  • Grant DOI 10.55776/P27005
  • Funding program Principal Investigator Projects
  • Status ended
  • Start August 1, 2014
  • End July 31, 2019
  • Funding amount € 315,000
  • E-mail

Disciplines

Mathematics (90%); Physics, Astronomy (10%)

Keywords

    Boundary Element Method, Adaptive Mesh-Refinement, A Posteriori Error Estimate, Quasi-Optimal Convergence Rates, Convergent Adaptive Algorithm, FEM-BEM coupling

Abstract Final report

The ultimate goal of adaptive mesh-refining schemes is to compute a discrete solution with error below a prescribed tolerance at the expense of, up to a multiplicative constant, the minimal computational cost. Although adaptive strategies are successfully employed since the eighties, only comparably little of the empirical observations can be predicted and guaranteed by mathematical analysis. The proposed research aims at the further mathematical foundation of certain aspects of adaptive algorithms, with the focus on convergence and optimal convergence rates for boundary element based methods for second-order elliptic PDEs. First, we aim to consider adaptive BEM (boundary element method) for second-order elliptic PDEs. We will generalize recent own work from the lowest-order case and piecewise flat boundaries to higher polynomials on piecewise smooth boundaries and beyond the Laplace equation. Moreover, we shall include the adaptive approximation of the given data into the developed algorithm, so that a possible implementation has to deal with discrete integral operators only. We expect to prove convergence with optimal rate, where the possible rate is determined by the regularity of the given data and the (unknown) solution only. A major issue will then be to include matrix compression techniques from the field of so-called fast BEM into the convergence and quasi-optimality analysis. Second, we consider the adaptive coupling of FEM (finite element method) and BEM for different coupling formulations. Recent own work proves plain convergence by means of the estimator reduction principle, where in the presence of certain nonlinearities in the FEM domain the analysis is restricted to lowest-order FEM. We aim at the proof of optimal convergence rates also for higher- order elements. The fact that even in the linear case the operator matrices of the FEM-BEM couplings are not symmetric and/or not elliptic prevents to use techniques from the literature. Instead, new mathematical techniques have to be developed. In particular, we intend to get new insight into or even a general mathematical frame of quasi-optimal convergence of adaptive FEM in the presence of weak nonlinearities as, e.g., strongly monotone operators. Third, since an adaptive mesh-refinement allows the improved resolution of the problem geometry, we will focus on the adaptive geometry approximation which is so far essentially neglected in the literature. The development of a convergent adaptive algorithm which includes the adaptive resolution of the geometry, will have an important impact on adaptive BEM as well as FEM. The proof of optimal convergence rates in such a frame would be a fundamental milestone in the mathematical understanding of adaptive schemes.

For two reasons, fast and accurate error estimation plays a key role in reliable and efficient scientific computing: First, one may want to check whether the solution of a numerical simulation is accurate enough. Second, if this is not the case, one aims to improve the discretization, e.g., by local refinement of the underlying mesh. Both subjects are usually covered by so-called a posteriori error estimates and related adaptive mesh-refining algorithms. For error control in finite element methods, there is a broad variety of a posteriori error estimators available, and convergence as well as optimality of adaptive algorithms is well studied in the literature. For integral equations as well as the coupling of integral and differential equations, the funded research project derived a posteriori error estimates and developed and analyzed optimal adaptive mesh-refinement strategies.

Research institution(s)
  • Technische Universität Wien - 100%
International project participants
  • Norbert Heuer, Pontificia Universidad Catolica de Chile - Chile
  • Carsten Carstensen, Humboldt-Universität zu Berlin - Germany
  • Ernst Peter Stephan, Universität Hannover - Germany
  • Stefan Funken, Universität Ulm - Germany
  • Helmut Harbrecht, Universität Basel - Switzerland

Research Output

  • 498 Citations
  • 60 Publications
  • 1 Disseminations
Publications
  • 2021
    Title Rate optimality of adaptive finite element methods with respect to overall computational costs
    DOI 10.1090/mcom/3654
    Type Journal Article
    Author Gantner G
    Journal Mathematics of Computation
    Pages 2011-2040
    Link Publication
  • 2021
    Title Functional a posteriori error estimates for boundary element methods
    DOI 10.1007/s00211-021-01188-6
    Type Journal Article
    Author Kurz S
    Journal Numerische Mathematik
    Pages 937-966
    Link Publication
  • 2017
    Title A linear Uzawa-type solver for nonlinear transmission problems
    DOI 10.48550/arxiv.1703.10796
    Type Preprint
    Author Führer T
  • 2017
    Title Adaptive IGAFEM with optimal convergence rates: Hierarchical B-splines
    DOI 10.1142/s0218202517500543
    Type Journal Article
    Author Gantner G
    Journal Mathematical Models and Methods in Applied Sciences
    Pages 2631-2674
    Link Publication
  • 2017
    Title Rate optimal adaptive FEM with inexact solver for nonlinear operators
    DOI 10.1093/imanum/drx050
    Type Journal Article
    Author Gantner G
    Journal IMA Journal of Numerical Analysis
    Pages 1797-1831
    Link Publication
  • 2017
    Title Local inverse estimates for non-local boundary integral operators
    DOI 10.1090/mcom/3175
    Type Journal Article
    Author Aurada M
    Journal Mathematics of Computation
    Pages 2651-2686
    Link Publication
  • 2018
    Title Zur Instanzoptimalität adaptiver 2D FEM [Master thesis, in German]
    Type Other
    Author Michael Innerberger
  • 2018
    Title On adaptive FEM and BEM for indefinite and nonlinear problems [PhD thesis]
    Type Other
    Author Alexander Haberl
    Link Publication
  • 2018
    Title Superconvergence in a DPG method for an ultra-weak formulation
    DOI 10.1016/j.camwa.2017.11.029
    Type Journal Article
    Author Führer T
    Journal Computers & Mathematics with Applications
    Pages 1705-1718
    Link Publication
  • 2019
    Title The saturation assumption yields optimal convergence of two-level adaptive BEM
    DOI 10.48550/arxiv.1907.06612
    Type Preprint
    Author Praetorius D
  • 2019
    Title Adaptive boundary element methods for the computation of the electrostatic capacity on complex polyhedra
    DOI 10.1016/j.jcp.2019.07.036
    Type Journal Article
    Author Betcke T
    Journal Journal of Computational Physics
    Pages 108837
    Link Publication
  • 2019
    Title Adaptive isogeometric boundary element methods with local smoothness control
    DOI 10.48550/arxiv.1903.01830
    Type Preprint
    Author Gantner G
  • 2019
    Title Optimal additive Schwarz preconditioning for adaptive 2D IGA boundary element methods
    DOI 10.1016/j.cma.2019.03.038
    Type Journal Article
    Author Führer T
    Journal Computer Methods in Applied Mechanics and Engineering
    Pages 571-598
    Link Publication
  • 2019
    Title Optimal adaptivity for the SUPG finite element method
    DOI 10.1016/j.cma.2019.05.028
    Type Journal Article
    Author Erath C
    Journal Computer Methods in Applied Mechanics and Engineering
    Pages 308-327
    Link Publication
  • 2019
    Title Adaptive Uzawa algorithm for the Stokes equation
    DOI 10.1051/m2an/2019039
    Type Journal Article
    Author Di Fratta G
    Journal ESAIM: Mathematical Modelling and Numerical Analysis
    Pages 1841-1870
    Link Publication
  • 2021
    Title Quasi-optimal convergence rate for an adaptive method for the integral fractional Laplacian
    DOI 10.1090/mcom/3603
    Type Journal Article
    Author Faustmann M
    Journal Mathematics of Computation
    Pages 1557-1587
    Link Publication
  • 2021
    Title Benchmark computations for the polarization tensor of small conducting objects
    DOI 10.48550/arxiv.2106.15157
    Type Preprint
    Author Amad A
  • 2020
    Title Instance-Optimal Goal-Oriented Adaptivity
    DOI 10.1515/cmam-2019-0115
    Type Journal Article
    Author Innerberger M
    Journal Computational Methods in Applied Mathematics
    Pages 109-126
    Link Publication
  • 2020
    Title Optimal convergence behavior of adaptive FEM driven by simple ( h - h / 2 ) -type error estimators
    DOI 10.1016/j.camwa.2019.07.014
    Type Journal Article
    Author Erath C
    Journal Computers & Mathematics with Applications
    Pages 623-642
    Link Publication
  • 2020
    Title Dörfler marking with minimal cardinality is a linear complexity problem
    DOI 10.1090/mcom/3553
    Type Journal Article
    Author Pfeiler C
    Journal Mathematics of Computation
    Pages 2735-2752
    Link Publication
  • 2019
    Title Quasi-optimal convergence rate for an adaptive method for the integral fractional Laplacian
    DOI 10.48550/arxiv.1903.10409
    Type Preprint
    Author Faustmann M
  • 2019
    Title Dörfler marking with minimal cardinality is a linear complexity problem
    DOI 10.48550/arxiv.1907.13078
    Type Preprint
    Author Pfeiler C
  • 2019
    Title Instance-optimal goal-oriented adaptivity
    DOI 10.48550/arxiv.1907.13035
    Type Preprint
    Author Innerberger M
  • 2018
    Title Adaptive BEM with inexact PCG solver yields almost optimal computational costs
    DOI 10.1007/s00211-018-1011-1
    Type Journal Article
    Author Führer T
    Journal Numerische Mathematik
    Pages 967-1008
    Link Publication
  • 2018
    Title Adaptive BEM with inexact PCG solver yields almost optimal computational costs
    DOI 10.48550/arxiv.1806.00313
    Type Preprint
    Author Führer T
  • 2018
    Title Adaptive vertex-centered finite volume methods for general second-order linear elliptic partial differential equations
    DOI 10.1093/imanum/dry006
    Type Journal Article
    Author Erath C
    Journal IMA Journal of Numerical Analysis
    Pages 983-1008
    Link Publication
  • 2018
    Title A linear Uzawa-type FEM–BEM solver for nonlinear transmission problems
    DOI 10.1016/j.camwa.2017.12.035
    Type Journal Article
    Author Führer T
    Journal Computers & Mathematics with Applications
    Pages 2678-2697
    Link Publication
  • 2018
    Title Adaptive Uzawa algorithm for the Stokes equation
    DOI 10.48550/arxiv.1812.11798
    Type Preprint
    Author Di Fratta G
  • 2020
    Title The saturation assumption yields optimal convergence of two-level adaptive BEM
    DOI 10.1016/j.apnum.2020.01.014
    Type Journal Article
    Author Praetorius D
    Journal Applied Numerical Mathematics
    Pages 105-124
    Link Publication
  • 2019
    Title Adaptive BEM with optimal convergence rates for the Helmholtz equation
    DOI 10.1016/j.cma.2018.12.006
    Type Journal Article
    Author Bespalov A
    Journal Computer Methods in Applied Mechanics and Engineering
    Pages 260-287
    Link Publication
  • 2022
    Title Benchmark computations for the polarization tensor characterization of small conducting objects
    DOI 10.1016/j.apm.2022.06.024
    Type Journal Article
    Author Amad A
    Journal Applied Mathematical Modelling
    Pages 94-107
    Link Publication
  • 2016
    Title Adaptive 2D IGA boundary element methods
    DOI 10.1016/j.enganabound.2015.10.003
    Type Journal Article
    Author Feischl M
    Journal Engineering Analysis with Boundary Elements
    Pages 141-153
    Link Publication
  • 2016
    Title Optimal additive Schwarz preconditioning for hypersingular integral equations on locally refined triangulations
    DOI 10.1007/s10092-016-0190-3
    Type Journal Article
    Author Feischl M
    Journal Calcolo
    Pages 367-399
  • 2015
    Title Optimal convergence for adaptive IGA boundary element methods for weakly-singular integral equations
    DOI 10.48550/arxiv.1510.05111
    Type Preprint
    Author Feischl M
  • 2015
    Title Local inverse estimates for non-local boundary integral operators
    DOI 10.48550/arxiv.1504.04394
    Type Preprint
    Author Aurada M
  • 2015
    Title An abstract analysis of optimal goal-oriented adaptivity
    DOI 10.48550/arxiv.1505.04536
    Type Preprint
    Author Feischl M
  • 2015
    Title Simultaneous quasi-optimal convergence rates in FEM-BEM coupling
    DOI 10.1002/mma.3374
    Type Journal Article
    Author Melenk J
    Journal Mathematical Methods in the Applied Sciences
    Pages 463-485
    Link Publication
  • 2017
    Title Optimal adaptivity for non-symmetric FEM/BEM coupling
    DOI 10.48550/arxiv.1710.06082
    Type Preprint
    Author Feischl M
  • 2016
    Title Adaptive isogeometric boundary element method for the hyper-singular integral equation [Master thesis]
    Type Other
    Author Stefan Schimanko
    Link Publication
  • 2017
    Title Adaptive FEM für Probleme mit inhomogenen Dirichlet-Daten [Master's thesis, in German]
    Type Other
    Author Slanovc
  • 2017
    Title Adaptive FEM with coarse initial mesh guarantees optimal convergence rates for compactly perturbed elliptic problems
    DOI 10.1016/j.cma.2016.12.014
    Type Journal Article
    Author Bespalov A
    Journal Computer Methods in Applied Mechanics and Engineering
    Pages 318-340
    Link Publication
  • 2017
    Title Optimal adaptivity for splines in finite and boundary element methods [PhD thesis]
    Type Other
    Author Gregor Gantner
    Link Publication
  • 2017
    Title Adaptive vertex-centered finite volume methods for general second-order linear elliptic PDEs
    DOI 10.48550/arxiv.1709.07181
    Type Preprint
    Author Erath C
  • 2016
    Title Optimal convergence for adaptive IGA boundary element methods for weakly-singular integral equations
    DOI 10.1007/s00211-016-0836-8
    Type Journal Article
    Author Feischl M
    Journal Numerische Mathematik
    Pages 147-182
    Link Publication
  • 2016
    Title Adaptive FEM with coarse initial mesh guarantees optimal convergence rates for compactly perturbed elliptic problems
    DOI 10.48550/arxiv.1606.08319
    Type Preprint
    Author Bespalov A
  • 2016
    Title Adaptive Vertex-Centered Finite Volume Methods with Convergence Rates
    DOI 10.1137/15m1036701
    Type Journal Article
    Author Erath C
    Journal SIAM Journal on Numerical Analysis
    Pages 2228-2255
    Link Publication
  • 2016
    Title An Abstract Analysis of Optimal Goal-Oriented Adaptivity
    DOI 10.1137/15m1021982
    Type Journal Article
    Author Feischl M
    Journal SIAM Journal on Numerical Analysis
    Pages 1423-1448
    Link Publication
  • 2015
    Title Adaptive vertex-centered finite volume methods with convergence rates
    DOI 10.48550/arxiv.1508.06155
    Type Preprint
    Author Erath C
  • 2015
    Title Optimal additive Schwarz methods for the hp-BEM: The hypersingular integral operator in 3D on locally refined meshes
    DOI 10.1016/j.camwa.2015.06.025
    Type Journal Article
    Author Führer T
    Journal Computers & Mathematics with Applications
    Pages 1583-1605
    Link Publication
  • 2015
    Title Adaptive 2D IGA boundary element methods
    DOI 10.48550/arxiv.1504.06164
    Type Preprint
    Author Feischl M
  • 2015
    Title QUASI-OPTIMAL CONVERGENCE RATES FOR ADAPTIVE BOUNDARY ELEMENT METHODS WITH DATA APPROXIMATION. PART II: HYPER-SINGULAR INTEGRAL EQUATION
    Type Journal Article
    Author Feischl Michael
    Journal ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS
    Pages 153-176
  • 2015
    Title Stabilität der L2-Orthogonalprojektion im Sobolev-Raum H1 und in lokal gewichteten L2-Räumen [Bachelor thesis, in German]
    Type Other
    Author Carl-Martin Pfeiler
  • 2015
    Title Stabile Implementierung von HILBERT S2P1 [Bachelor thesis, in German]
    Type Other
    Author Juliana Kainz
  • 2015
    Title Rate optimality of adaptive algorithms [PhD thesis]
    Type Other
    Author Michael Feischl
  • 2015
    Title Instanz-Optimalität adaptiver FEM [Master's thesis, in German]
    Type Other
    Author Haberl
  • 2015
    Title Adaptive boundary element methods for optimal convergence of point errors
    DOI 10.1007/s00211-015-0727-4
    Type Journal Article
    Author Feischl M
    Journal Numerische Mathematik
    Pages 541-567
  • 2015
    Title Reliable and efficient a posteriori error estimation for adaptive IGA boundary element methods for weakly-singular integral equations
    DOI 10.1016/j.cma.2015.03.013
    Type Journal Article
    Author Feischl M
    Journal Computer Methods in Applied Mechanics and Engineering
    Pages 362-386
    Link Publication
  • 2014
    Title Zur Kopplung von finiten Elementen und Randelementen [PhD thesis, in German]
    Type Other
    Author Thomas Führer
    Link Publication
  • 2014
    Title Convergence of Adaptive BEM and Adaptive FEM-BEM Coupling for Estimators Without h-Weighting Factor
    DOI 10.1515/cmam-2014-0019
    Type Journal Article
    Author Feischl M
    Journal Computational Methods in Applied Mathematics
    Pages 485-508
    Link Publication
  • 0
    Title On optimal costs of adaptive algorithms [PhD thesis, ongoing]
    Type Other
    Author Stefan Schimanko
Disseminations
  • 0 Link
    Title TUForMath - TU Forum Mathematik
    Type A talk or presentation
    Link Link

Discovering
what
matters.

Newsletter

FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

Contact

Austrian Science Fund (FWF)
Georg-Coch-Platz 2
(Entrance Wiesingerstraße 4)
1010 Vienna

office(at)fwf.ac.at
+43 1 505 67 40

General information

  • Job Openings
  • Jobs at FWF
  • Press
  • Philanthropy
  • scilog
  • FWF Office
  • Social Media Directory
  • LinkedIn, external URL, opens in a new window
  • Twitter, external URL, opens in a new window
  • Facebook, external URL, opens in a new window
  • Instagram, external URL, opens in a new window
  • YouTube, external URL, opens in a new window
  • Cookies
  • Whistleblowing/Complaints Management
  • Accessibility Statement
  • Data Protection
  • Acknowledgements
  • Social Media Directory
  • © Österreichischer Wissenschaftsfonds FWF
© Österreichischer Wissenschaftsfonds FWF