• Skip to content (access key 1)
  • Skip to search (access key 7)
FWF — Austrian Science Fund
  • Go to overview page Discover

    • Research Radar
    • Discoveries
      • Emmanuelle Charpentier
      • Adrian Constantin
      • Monika Henzinger
      • Ferenc Krausz
      • Wolfgang Lutz
      • Walter Pohl
      • Christa Schleper
      • Anton Zeilinger
    • scilog Magazine
    • Awards
      • FWF Wittgenstein Awards
      • FWF START Awards
    • excellent=austria
      • Clusters of Excellence
      • Emerging Fields
    • In the Spotlight
      • 40 Years of Erwin Schrödinger Fellowships
      • Quantum Austria
    • Dialogs and Talks
      • think.beyond Summit
    • E-Book Library
  • Go to overview page Funding

    • Portfolio
      • excellent=austria
        • Clusters of Excellence
        • Emerging Fields
      • Projects
        • Principal Investigator Projects
        • Principal Investigator Projects International
        • Clinical Research
        • 1000 Ideas
        • Arts-Based Research
        • FWF Wittgenstein Award
      • Careers
        • ESPRIT
        • FWF ASTRA Awards
        • Erwin Schrödinger
        • Elise Richter
        • Elise Richter PEEK
        • doc.funds
        • doc.funds.connect
      • Collaborations
        • Specialized Research Groups
        • Special Research Areas
        • Research Groups
        • International – Multilateral Initiatives
        • #ConnectingMinds
      • Communication
        • Top Citizen Science
        • Science Communication
        • Book Publications
        • Digital Publications
        • Open-Access Block Grant
      • Subject-Specific Funding
        • AI Mission Austria
        • Belmont Forum
        • ERA-NET HERA
        • ERA-NET NORFACE
        • ERA-NET QuantERA
        • ERA-NET TRANSCAN
        • Alternative Methods to Animal Testing
        • European Partnership Biodiversa+
        • European Partnership ERA4Health
        • European Partnership ERDERA
        • European Partnership EUPAHW
        • European Partnership FutureFoodS
        • European Partnership OHAMR
        • European Partnership PerMed
        • European Partnership Water4All
        • Gottfried and Vera Weiss Award
        • netidee SCIENCE
        • Herzfelder Foundation Projects
        • Quantum Austria
        • Rückenwind Funding Bonus
        • Zero Emissions Award
      • International Collaborations
        • Belgium/Flanders
        • Germany
        • France
        • Italy/South Tyrol
        • Japan
        • Luxembourg
        • Poland
        • Switzerland
        • Slovenia
        • Taiwan
        • Tyrol–South Tyrol–Trentino
        • Czech Republic
        • Hungary
    • Step by Step
      • Find Funding
      • Submitting Your Application
      • International Peer Review
      • Funding Decisions
      • Carrying out Your Project
      • Closing Your Project
      • Further Information
        • Integrity and Ethics
        • Inclusion
        • Applying from Abroad
        • Personnel Costs
        • PROFI
        • Final Project Reports
        • Final Project Report Survey
    • FAQ
      • Project Phase PROFI
        • Accounting for Approved Funds
        • Labor and Social Law
        • Project Management
      • Project Phase Ad Personam
        • Accounting for Approved Funds
        • Labor and Social Law
        • Project Management
      • Expiring Programs
        • FWF START Awards
  • Go to overview page About Us

    • Mission Statement
    • FWF Video
    • Values
    • Facts and Figures
    • Annual Report
    • What We Do
      • Research Funding
        • Matching Funds Initiative
      • International Collaborations
      • Studies and Publications
      • Equal Opportunities and Diversity
        • Objectives and Principles
        • Measures
        • Creating Awareness of Bias in the Review Process
        • Terms and Definitions
        • Your Career in Cutting-Edge Research
      • Open Science
        • Open Access Policy
          • Open Access Policy for Peer-Reviewed Publications
          • Open Access Policy for Peer-Reviewed Book Publications
          • Open Access Policy for Research Data
        • Research Data Management
        • Citizen Science
        • Open Science Infrastructures
        • Open Science Funding
      • Evaluations and Quality Assurance
      • Academic Integrity
      • Science Communication
      • Philanthropy
      • Sustainability
    • History
    • Legal Basis
    • Organization
      • Executive Bodies
        • Executive Board
        • Supervisory Board
        • Assembly of Delegates
        • Scientific Board
        • Juries
      • FWF Office
    • Jobs at FWF
  • Go to overview page News

    • News
    • Press
      • Logos
    • Calendar
      • Post an Event
      • FWF Informational Events
    • Job Openings
      • Enter Job Opening
    • Newsletter
  • Discovering
    what
    matters.

    FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

    SOCIAL MEDIA

    • LinkedIn, external URL, opens in a new window
    • Twitter, external URL, opens in a new window
    • Facebook, external URL, opens in a new window
    • Instagram, external URL, opens in a new window
    • YouTube, external URL, opens in a new window

    SCILOG

    • Scilog — The science magazine of the Austrian Science Fund (FWF)
  • elane login, external URL, opens in a new window
  • Scilog external URL, opens in a new window
  • de Wechsle zu Deutsch

  

Uniform parameterization and regularity in real geometry

Uniform parameterization and regularity in real geometry

Armin Rainer (ORCID: 0000-0003-3825-3313)
  • Grant DOI 10.55776/P32905
  • Funding program Principal Investigator Projects
  • Status ended
  • Start January 1, 2020
  • End December 31, 2024
  • Funding amount € 394,779
  • E-mail

Disciplines

Mathematics (100%)

Keywords

    Definable Sets, Subanalytic Geometry, Uniform Parameterization, Zero And Level Sets, Arc-Smooth Functions, Regularity Of Geodesics

Abstract Final report

The problem of finding regular parameterizations for the solutions of polynomial equations with differentiable coefficients is ubiquitous in analysis and geometry. It is, for instance, central for the perturbation theory of linear operators and for the Cauchy problem of hyperbolic partial differential equations. The goal of the project is the application of the techniques, which we developed for the solution of this problem, to various unsolved problems in analysis and geometry. The focus is on the quest for quantitative bounds for the Hausdorff measure of the zero sets of smooth functions vanishing of finite order and for the volume of tubular neighborhoods thereof. Of particular in- terest in this context are the nodal sets of Laplace eigenfunctions. While these problems are well understood in the analytic category, for smooth functions new methods are required. An important tool of real geometry is the uniform parameterization of sets that are definable in an o-mimimal structure. Definable sets provide a general framework for real geometry and they are also studied in model theory. Since these sets incorporate a natural tameness and have many good topological, geometric, and metric properties, they often find applications in other fields, e.g. number theory. Recent years brought spectacular results on the number of rational points in definable sets. One essential ingredient in this context are geometric parameterizations of the sets with uniform control on the partial derivatives up to some finite order. As part of the project I plan to adapt our parameterization techniques to the definable setting and hence to refine the known methods of regular parameterization. Beside the general interest in good parameterizations of definable sets, we expect applications for the number of rational points and beyond. A fundamental result in smooth analysis states that functions on open domains are smooth if and only if their compositions with smooth curves in the domain are smooth. For functions on closed domains that is not necessarily true, it depends on the geometry of the domain. In recent work I showed that the result holds on closed subanalytic sets (with some natural topological assumptions). Subanalytic sets form an important family of definable sets. It is known that this useful characterization of smoothness is not true for general definable sets. But I expect that it holds for sets definable in polynomially bounded o-minimal structures. Analogous questions can be asked for real analyticity and ultradifferentiability. Furthermore, it is important to understand the natural topological and bornological properties of the associated function spaces. A difficult problem in singularity theory is to understand the geodesics (i.e. length minimizing curves) on singular spaces with respect to the inner geodesic distance. It is known that on suban- alytic sets the limits of secants of geodesics exist. But it is an open question whether the limits of tangents of geodesics exist, or in other words, whether the geodesics are continuously differentiable. There is a striking similarity with the regularity problem for geodesics in sub-Riemannian geometry. In that case the geodesics are either solutions of a differential equation and, consequently, their regularity is clear, or else the regularity is not fully understood. However, there are exciting recent developments in some particular cases.

The project focused on the regularity theory of solutions of polynomial equations that depend on parameters. Significant progress was made, yielding optimal and decisive results that provide a comprehensive understanding. We now have a clear grasp of the optimal regularity of these solutions under minimal conditions on the coefficients. Additionally, we proved that the map "coefficients-to-solutions" is bounded and continuous relative to natural topologies. By generalizing these techniques, we obtained lifting theorems for complex representations of finite groups. These theorems not only extend the results for polynomials but also enhance our understanding within a broader context. As an application, we established that the zero sets of differentiable functions, given appropriate control over their derivatives, exhibit remarkable properties similar to those of polynomials. Specifically, we obtained effective estimates of the size of these zero sets and good local parameterizations. Building on an influential result in analysis, which states that a function on an open set is smooth if it respects smooth curves, we identified a broad class of closed sets that admit an analogous theorem. This work uncovers a subtle relationship between the analytic properties of a function and the geometric characteristics of its domain. In particular, we established a precise link between the loss of derivatives and the sharpness of singularities on the boundary of the domain. Similar results were also obtained in the real analytic category. Whitney's extension problem has garnered significant attention since Fefferman's solution in the early 2000s. In our project, we focused on the geometric aspects of the problem and resolved a partial case of a related conjecture. Specifically, we characterized the partially defined functions in Euclidean space that are restrictions of globally defined functions of a certain regularity (C^1 with a given modulus of continuity for the first derivatives) and that are definable in an o-minimal expansion of the real field. This was accomplished by proving a definable Lipschitz selection theorem for specific set-valued maps, which also led to other interesting applications. In addition, we showed the uniformity and boundedness of the extension by establishing a uniform bounded version of the definable Whitney jet extension theorem. In another line of research, we studied extension problems within the context of ultradifferentiable functions, often arriving at optimal solutions. Ultradifferentiable functions form classes of indefinitely differentiable functions with growth constraints on the infinite sequence of derivatives, generalizing the Cauchy bounds for analytic functions. We also explored a broad range of problems in ultradifferentiable analysis, in great generality. This included studying nonlinear conditions for ultradifferentiability, investigating functional-analytic properties of spaces of ultradifferentiable functions, and applying these results to microlocal analysis.

Research institution(s)
  • Universität Wien - 100%
International project participants
  • Adam Parusinski, Université Côte d´Azur - France

Research Output

  • 55 Citations
  • 38 Publications
  • 14 Scientific Awards
  • 1 Fundings
Publications
  • 2025
    Title Perturbation Theory of Polynomials and Linear Operators
    DOI 10.1007/978-3-031-68711-2_3
    Type Book Chapter
    Author Parusinski A
    Publisher Springer Nature
    Pages 121-202
  • 2022
    Title Roots of Gårding hyperbolic polynomials
    DOI 10.1090/proc/15634
    Type Journal Article
    Author Rainer A
    Journal Proceedings of the American Mathematical Society
    Pages 2433-2446
    Link Publication
  • 2024
    Title Arc-smooth functions and cuspidality of sets
    DOI 10.1007/s11854-024-0337-0
    Type Journal Article
    Author Rainer A
    Journal Journal d'Analyse Mathématique
  • 2024
    Title Uniform extension of definable Cm,-Whitney jets
    DOI 10.2140/pjm.2024.330.317
    Type Journal Article
    Author Parusiński A
    Journal Pacific Journal of Mathematics
  • 2024
    Title Interpolation of derivatives and ultradifferentiable regularity
    DOI 10.1002/mana.202300567
    Type Journal Article
    Author Rainer A
    Journal Mathematische Nachrichten
    Pages 617-635
    Link Publication
  • 2023
    Title Sobolev sheaves on the plane
    DOI 10.48550/arxiv.2308.08077
    Type Preprint
    Author Oudrane M
  • 2023
    Title Perturbation theory of polynomials and linear operators
    DOI 10.48550/arxiv.2308.01299
    Type Preprint
    Author Parusinski A
  • 2023
    Title Quantitative tame properties of differentiable functions with controlled derivatives
    DOI 10.1016/j.na.2023.113372
    Type Journal Article
    Author Rainer A
    Journal Nonlinear Analysis
    Pages 113372
    Link Publication
  • 2023
    Title Definable Lipschitz selections for affine-set valued maps
    DOI 10.48550/arxiv.2306.09155
    Type Preprint
    Author Parusinski A
  • 2022
    Title On the maximal extension in the mixed ultradifferentiable weight sequence setting
    DOI 10.4064/sm200930-17-3
    Type Journal Article
    Author Schindl G
    Journal Studia Mathematica
    Pages 209-240
    Link Publication
  • 2022
    Title Ultradifferentiable extension theorems: A survey
    DOI 10.1016/j.exmath.2021.12.001
    Type Journal Article
    Author Rainer A
    Journal Expositiones Mathematicae
    Pages 679-757
    Link Publication
  • 2022
    Title The Borel map in the mixed Beurling setting
    DOI 10.48550/arxiv.2205.08195
    Type Preprint
    Author Nenning D
  • 2022
    Title The theorem of iterates for elliptic and non-elliptic operators
    DOI 10.1016/j.jfa.2022.109554
    Type Journal Article
    Author Fürdös S
    Journal Journal of Functional Analysis
    Pages 109554
    Link Publication
  • 2022
    Title Nonlinear Conditions for Ultradifferentiability: A Uniform Approach
    DOI 10.1007/s12220-022-00914-2
    Type Journal Article
    Author Nenning D
    Journal The Journal of Geometric Analysis
    Pages 171
    Link Publication
  • 2023
    Title Uniform extension of definable $C^{m,\omega}$-Whitney jets
    DOI 10.48550/arxiv.2306.09156
    Type Preprint
    Author Parusinski A
  • 2024
    Title On real analytic functions on closed subanalytic domains
    DOI 10.1007/s00013-024-01983-1
    Type Journal Article
    Author Rainer A
    Journal Archiv der Mathematik
    Pages 639-650
    Link Publication
  • 2024
    Title Continuity of the solution map for hyperbolic polynomials
    Type Other
    Author Parusinski A
    Link Publication
  • 2024
    Title On the continuity of the solution map for polynomials
    Type Other
    Author Parusinski A
    Link Publication
  • 2022
    Title Quantitative tame properties of differentiable functions with controlled derivatives
    DOI 10.48550/arxiv.2208.04006
    Type Preprint
    Author Rainer A
  • 2022
    Title The Borel map in the mixed Beurling setting
    DOI 10.1007/s13398-022-01372-9
    Type Journal Article
    Author Nenning D
    Journal Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemát
    Pages 40
    Link Publication
  • 2022
    Title On optimal solutions of the Borel problem in the Roumieu case
    DOI 10.36045/j.bbms.220322
    Type Journal Article
    Author Nenning D
    Journal Bulletin of the Belgian Mathematical Society - Simon Stevin
    Link Publication
  • 2022
    Title Hölder-Zygmund classes on smooth curves
    DOI 10.4171/zaa/1704
    Type Journal Article
    Author Rainer A
    Journal Zeitschrift für Analysis und ihre Anwendungen
  • 2022
    Title Hölder--Zygmund classes on smooth curves
    DOI 10.48550/arxiv.2203.04191
    Type Preprint
    Author Rainer A
  • 2021
    Title Nonlinear Conditions for Ultradifferentiability
    DOI 10.1007/s12220-021-00718-w
    Type Journal Article
    Author Nenning D
    Journal The Journal of Geometric Analysis
    Pages 12264-12287
    Link Publication
  • 2021
    Title On the Extension of Whitney Ultrajets of Beurling Type
    DOI 10.1007/s00025-021-01347-z
    Type Journal Article
    Author Rainer A
    Journal Results in Mathematics
    Pages 36
  • 2021
    Title Sobolev Lifting over Invariants
    DOI 10.3842/sigma.2021.037
    Type Journal Article
    Author Parusinski A
    Journal Symmetry, Integrability and Geometry: Methods and Applications
    Link Publication
  • 2020
    Title Nuclear global spaces of ultradifferentiable functions in the matrix weighted setting
    DOI 10.1007/s43037-020-00090-x
    Type Journal Article
    Author Boiti C
    Journal Banach Journal of Mathematical Analysis
    Pages 14
    Link Publication
  • 2020
    Title Solid hulls and cores of classes of weighted entire functions defined in terms of associated weight functions
    DOI 10.1007/s13398-020-00910-7
    Type Journal Article
    Author Schindl G
    Journal Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemát
    Pages 176
    Link Publication
  • 2021
    Title On optimal solutions of the Borel problem in the Roumieu case
    DOI 10.48550/arxiv.2112.08463
    Type Preprint
    Author Nenning D
  • 2021
    Title Ultradifferentiable extension theorems: a survey
    DOI 10.48550/arxiv.2107.01061
    Type Preprint
    Author Rainer A
  • 2020
    Title Ultradifferentiable Chevalley theorems and isotropic functions
    DOI 10.1007/s10231-020-01003-3
    Type Journal Article
    Author Rainer A
    Journal Annali di Matematica Pura ed Applicata (1923 -)
    Pages 491-504
  • 2021
    Title Ultraholomorphic sectorial extensions of Beurling type
    DOI 10.1007/s43034-021-00124-x
    Type Journal Article
    Author Nenning D
    Journal Annals of Functional Analysis
    Pages 45
    Link Publication
  • 2021
    Title Nonlinear conditions for ultradifferentiability: a uniform approach
    DOI 10.48550/arxiv.2109.07795
    Type Preprint
    Author Nenning D
  • 2021
    Title Surjectivity of the asymptotic Borel map in Carleman–Roumieu ultraholomorphic classes defined by regular sequences
    DOI 10.1007/s13398-021-01119-y
    Type Journal Article
    Author Jiménez-Garrido J
    Journal Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemát
    Pages 181
    Link Publication
  • 2021
    Title Nonlinear conditions for ultradifferentiability
    DOI 10.48550/arxiv.2102.03871
    Type Preprint
    Author Nenning D
  • 2021
    Title The Theorem of Iterates for elliptic and non-elliptic Operators
    DOI 10.48550/arxiv.2103.02285
    Type Preprint
    Author Fürdös S
  • 0
    Title Differential Geometry in Infinite Dimensions: The Convenient Setting of Global Analysis, Part 2
    Type Book
    Author Kriegl A
    Publisher American Mathematical Society
  • 0
    Title Analysis in Infinite Dimensions: The Convenient Setting of Global Analysis, Part 1
    Type Book
    Author Kriegl A
    Publisher American Mathematical Society
Scientific Awards
  • 2024
    Title 9-th ECM Sevilla 2024, Spain, July 15 - 19, 2024. Mini-Symposium "Geometry, Algebra and Asymptotic Analysis of Differential Equations and Dynamical Systems"
    Type Personally asked as a key note speaker to a conference
    Level of Recognition Continental/International
  • 2024
    Title Geometric Structures Research Seminar SISSA, Trieste, Italy. February 27, 2024
    Type Personally asked as a key note speaker to a conference
    Level of Recognition Continental/International
  • 2024
    Title Special Session of the Central European Seminar in Celebration of Peter Michor's 75th Birthday, Masaryk University, Brno, Czech Republic, June 6 - 8, 2024.
    Type Personally asked as a key note speaker to a conference
    Level of Recognition Continental/International
  • 2023
    Title Algebra, Topology and Geometry Seminar, Laboratoire Jean Alexandre Dieudonne, Université Côte d'Azur, Nice, May 11, 2023
    Type Personally asked as a key note speaker to a conference
    Level of Recognition Continental/International
  • 2023
    Title Seminaire Chambery, Université de Savoie Mont-Blanc, France. October 19, 2023
    Type Personally asked as a key note speaker to a conference
    Level of Recognition Continental/International
  • 2023
    Title Gdansk-Krakow-Lodz-Warszawa Seminar in Singularity Theory, January 20, 2023
    Type Personally asked as a key note speaker to a conference
    Level of Recognition Continental/International
  • 2023
    Title Functional analysis meeting at Mons, Belgium, June 12 -13, 2023
    Type Personally asked as a key note speaker to a conference
    Level of Recognition Continental/International
  • 2022
    Title Mini-workshop on Transseries and Dynamical Systems, May 30 - June 1, 2022, The Fields Institute, part of: Thematic Program on Tame Geometry, Transseries and Applications to Analysis and Geometry January 1 - June 30, 2022
    Type Personally asked as a key note speaker to a conference
    Level of Recognition Continental/International
  • 2022
    Title Oberwolfach Research Fellows (OWRF) ID 2244p, with Adam Parusinski. MFO, Germany. October 30 - November 19, 2022
    Type Personally asked as a key note speaker to a conference
    Level of Recognition Continental/International
  • 2022
    Title Real Algebraic Geometry and Singularities, Conference in honor of Wojciech Kucharz's 70th birthday. Krakow, Poland. September 12 - 16, 2022
    Type Personally asked as a key note speaker to a conference
    Level of Recognition Continental/International
  • 2022
    Title Workshop on Functional and Complex Analysis, Valladolid, Spain. June 20 - 24, 2022
    Type Personally asked as a key note speaker to a conference
    Level of Recognition Continental/International
  • 2021
    Title School Of Real Geometry In Fortaleza, Brazil, May 24 - 28, 2021
    Type Personally asked as a key note speaker to a conference
    Level of Recognition Continental/International
  • 2020
    Title International Conference on Generalized Functions, Ghent Belgium, August 31 - September 4, 2020
    Type Personally asked as a key note speaker to a conference
    Level of Recognition Continental/International
  • 2020
    Title 56th Session of Seminar Sophus Lie, Paderborn, Germany, February 14 -15, 2020
    Type Personally asked as a key note speaker to a conference
    Level of Recognition Continental/International
Fundings
  • 2024
    Title Topics in Tame Geometry and Analysis
    Type Research grant (including intramural programme)
    DOI 10.55776/pat1381823
    Start of Funding 2024
    Funder Austrian Science Fund (FWF)

Discovering
what
matters.

Newsletter

FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

Contact

Austrian Science Fund (FWF)
Georg-Coch-Platz 2
(Entrance Wiesingerstraße 4)
1010 Vienna

office(at)fwf.ac.at
+43 1 505 67 40

General information

  • Job Openings
  • Jobs at FWF
  • Press
  • Philanthropy
  • scilog
  • FWF Office
  • Social Media Directory
  • LinkedIn, external URL, opens in a new window
  • Twitter, external URL, opens in a new window
  • Facebook, external URL, opens in a new window
  • Instagram, external URL, opens in a new window
  • YouTube, external URL, opens in a new window
  • Cookies
  • Whistleblowing/Complaints Management
  • Accessibility Statement
  • Data Protection
  • Acknowledgements
  • Social Media Directory
  • © Österreichischer Wissenschaftsfonds FWF
© Österreichischer Wissenschaftsfonds FWF