• Skip to content (access key 1)
  • Skip to search (access key 7)
FWF — Austrian Science Fund
  • Go to overview page Discover

    • Research Radar
    • Discoveries
      • Emmanuelle Charpentier
      • Adrian Constantin
      • Monika Henzinger
      • Ferenc Krausz
      • Wolfgang Lutz
      • Walter Pohl
      • Christa Schleper
      • Anton Zeilinger
    • scilog Magazine
    • Awards
      • FWF Wittgenstein Awards
      • FWF START Awards
    • excellent=austria
      • Clusters of Excellence
      • Emerging Fields
    • In the Spotlight
      • 40 Years of Erwin Schrödinger Fellowships
      • Quantum Austria
    • Dialogs and Talks
      • think.beyond Summit
    • E-Book Library
  • Go to overview page Funding

    • Portfolio
      • excellent=austria
        • Clusters of Excellence
        • Emerging Fields
      • Projects
        • Principal Investigator Projects
        • Principal Investigator Projects International
        • Clinical Research
        • 1000 Ideas
        • Arts-Based Research
        • FWF Wittgenstein Award
      • Careers
        • ESPRIT
        • FWF ASTRA Awards
        • Erwin Schrödinger
        • Elise Richter
        • Elise Richter PEEK
        • doc.funds
        • doc.funds.connect
      • Collaborations
        • Specialized Research Groups
        • Special Research Areas
        • Research Groups
        • International – Multilateral Initiatives
        • #ConnectingMinds
      • Communication
        • Top Citizen Science
        • Science Communication
        • Book Publications
        • Digital Publications
        • Open-Access Block Grant
      • Subject-Specific Funding
        • AI Mission Austria
        • Belmont Forum
        • ERA-NET HERA
        • ERA-NET NORFACE
        • ERA-NET QuantERA
        • ERA-NET TRANSCAN
        • Alternative Methods to Animal Testing
        • European Partnership Biodiversa+
        • European Partnership ERA4Health
        • European Partnership ERDERA
        • European Partnership EUPAHW
        • European Partnership FutureFoodS
        • European Partnership OHAMR
        • European Partnership PerMed
        • European Partnership Water4All
        • Gottfried and Vera Weiss Award
        • netidee SCIENCE
        • Herzfelder Foundation Projects
        • Quantum Austria
        • Rückenwind Funding Bonus
        • Zero Emissions Award
      • International Collaborations
        • Belgium/Flanders
        • Germany
        • France
        • Italy/South Tyrol
        • Japan
        • Luxembourg
        • Poland
        • Switzerland
        • Slovenia
        • Taiwan
        • Tyrol–South Tyrol–Trentino
        • Czech Republic
        • Hungary
    • Step by Step
      • Find Funding
      • Submitting Your Application
      • International Peer Review
      • Funding Decisions
      • Carrying out Your Project
      • Closing Your Project
      • Further Information
        • Integrity and Ethics
        • Inclusion
        • Applying from Abroad
        • Personnel Costs
        • PROFI
        • Final Project Reports
        • Final Project Report Survey
    • FAQ
      • Project Phase PROFI
        • Accounting for Approved Funds
        • Labor and Social Law
        • Project Management
      • Project Phase Ad Personam
        • Accounting for Approved Funds
        • Labor and Social Law
        • Project Management
      • Expiring Programs
        • FWF START Awards
  • Go to overview page About Us

    • Mission Statement
    • FWF Video
    • Values
    • Facts and Figures
    • Annual Report
    • What We Do
      • Research Funding
        • Matching Funds Initiative
      • International Collaborations
      • Studies and Publications
      • Equal Opportunities and Diversity
        • Objectives and Principles
        • Measures
        • Creating Awareness of Bias in the Review Process
        • Terms and Definitions
        • Your Career in Cutting-Edge Research
      • Open Science
        • Open Access Policy
          • Open Access Policy for Peer-Reviewed Publications
          • Open Access Policy for Peer-Reviewed Book Publications
          • Open Access Policy for Research Data
        • Research Data Management
        • Citizen Science
        • Open Science Infrastructures
        • Open Science Funding
      • Evaluations and Quality Assurance
      • Academic Integrity
      • Science Communication
      • Philanthropy
      • Sustainability
    • History
    • Legal Basis
    • Organization
      • Executive Bodies
        • Executive Board
        • Supervisory Board
        • Assembly of Delegates
        • Scientific Board
        • Juries
      • FWF Office
    • Jobs at FWF
  • Go to overview page News

    • News
    • Press
      • Logos
    • Calendar
      • Post an Event
      • FWF Informational Events
    • Job Openings
      • Enter Job Opening
    • Newsletter
  • Discovering
    what
    matters.

    FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

    SOCIAL MEDIA

    • LinkedIn, external URL, opens in a new window
    • Twitter, external URL, opens in a new window
    • Facebook, external URL, opens in a new window
    • Instagram, external URL, opens in a new window
    • YouTube, external URL, opens in a new window

    SCILOG

    • Scilog — The science magazine of the Austrian Science Fund (FWF)
  • elane login, external URL, opens in a new window
  • Scilog external URL, opens in a new window
  • de Wechsle zu Deutsch

  

Computational nonlinear PDEs

Computational nonlinear PDEs

Dirk Praetorius (ORCID: 0000-0002-1977-9830)
  • Grant DOI 10.55776/P33216
  • Funding program Principal Investigator Projects
  • Status ongoing
  • Start September 1, 2020
  • End August 31, 2025
  • Funding amount € 416,630
  • E-mail

Disciplines

Computer Sciences (10%); Mathematics (90%)

Keywords

    Adaptive Algorithm, Optimal Computational Complexity, Nonlinear Pdes, Finite Element Method, Iterative Solvers

Abstract

The ultimate goal of any numerical scheme is to compute a discrete solution with error below a prescribed tolerance at, up to a multiplicative constant, the minimal computational cost. Usually, the convergence behavior of numerical schemes is, however, spoiled by singularities of the given data and/or the unknown solution. Moreover, nonlinear PDEs naturally lead to discrete nonlinear systems, which cannot be solved exactly, but have to be solved approximately by (usually even nested) iterative methods. Therefore, the solver has to balance the discretization error as well as the solver error by controlling and steering (1) the underlying discretization, (2) the error from linearizing the discrete nonlinear systems, (3) the algebraic error from the inexact solution of the arising linear equations. While there is a rich body on a-posteriori error estimation for nonlinear PDEs, which also includes the inexact solution of the (nonlinear and linear) discrete systems, the thorough mathematical understanding of optimal convergence behavior of the related adaptive strategies is still in its infancy. The proposed research aims to provide a sound mathematical foundation of adaptive algorithms for nonlinear model problems. While available results on rate optimality of adaptive algorithms usually focus on algebraic convergence rates with respect to the degrees of freedom, the important punchline of the proposed research will be the mathematical understanding of optimal rates with respect to the overall computational costs. We believe that this question is timely and of utmost importance to practitioners working in the field of computational nonlinear PDEs. All theoretical findings will be implemented in MATLAB where the codes will be provided to the academic public online.

Research institution(s)
  • Technische Universität Wien - 100%
Project participants
  • Jens Markus Melenk, Technische Universität Wien , national collaboration partner
International project participants
  • Thomas Führer, Pontificia Universidad Catolica de Chile - Chile
  • Martin Vohralik, Inria - France
  • Carsten Carstensen, Humboldt-Universität zu Berlin - Germany
  • Johannes Kraus, Universität Duisburg-Essen - Germany
  • Ernst Peter Stephan, Universität Hannover - Germany
  • Thomas Wihler, University of Bern - Switzerland

Research Output

  • 184 Citations
  • 31 Publications
Publications
  • 2023
    Title Adaptive FEM with quasi-optimal overall cost for nonsymmetric linear elliptic PDEs
    DOI 10.1093/imanum/drad039
    Type Journal Article
    Author Brunner M
    Journal IMA Journal of Numerical Analysis
    Pages 1560-1596
    Link Publication
  • 2023
    Title Scaling-robust built-in a posteriori error estimation for discontinuous least-squares finite element methods
    DOI 10.48550/arxiv.2310.19930
    Type Preprint
    Author Bringmann P
  • 2023
    Title Local parameter selection in the C0 interior penalty method for the biharmonic equation
    DOI 10.1515/jnma-2023-0028
    Type Journal Article
    Author Bringmann P
    Journal Journal of Numerical Mathematics
    Pages 257-273
    Link Publication
  • 2023
    Title Cost-optimal adaptive iterative linearized FEM for semilinear elliptic PDEs
    DOI 10.1051/m2an/2023036
    Type Journal Article
    Author Becker R
    Journal ESAIM: Mathematical Modelling and Numerical Analysis
    Pages 2193-2225
    Link Publication
  • 2023
    Title hp-Robust multigrid solver on locally refined meshes for FEM discretizations of symmetric elliptic PDEs
    DOI 10.1051/m2an/2023104
    Type Journal Article
    Author Innerberger M
    Journal ESAIM: Mathematical Modelling and Numerical Analysis
    Pages 247-272
    Link Publication
  • 2023
    Title Plain convergence of goal-oriented adaptive FEM
    DOI 10.1016/j.camwa.2023.07.022
    Type Journal Article
    Author Helml V
    Journal Computers & Mathematics with Applications
    Pages 130-149
    Link Publication
  • 2025
    Title Cost-optimal adaptive FEM with linearization and algebraic solver for semilinear elliptic PDEs
    DOI 10.1007/s00211-025-01455-w
    Type Journal Article
    Author Brunner M
    Journal Numerische Mathematik
    Pages 409-445
    Link Publication
  • 2025
    Title Scaling-robust built-in a posteriori error estimation for discontinuous least-squares finite element methods
    DOI 10.1093/imanum/drae105
    Type Journal Article
    Author Bringmann P
    Journal IMA Journal of Numerical Analysis
    Link Publication
  • 2025
    Title Goal-Oriented Error Estimation and Adaptivity for Stochastic Collocation FEM
    DOI 10.1137/24m1673280
    Type Journal Article
    Author Bespalov A
    Journal SIAM/ASA Journal on Uncertainty Quantification
    Pages 613-638
    Link Publication
  • 2025
    Title Optimal Cost of (Goal-Oriented) Adaptive FEM for General Second-Order Linear Elliptic PDEs
    DOI 10.1007/978-3-031-86173-4_20
    Type Book Chapter
    Author Brunner M
    Publisher Springer Nature
    Pages 198-208
  • 2025
    Title Cost-Optimal Adaptive FEM for Semilinear Elliptic PDEs
    DOI 10.1007/978-3-031-86173-4_21
    Type Book Chapter
    Author Brunner M
    Publisher Springer Nature
    Pages 209-219
  • 2025
    Title On full linear convergence and optimal complexity of adaptive FEM with inexact solver
    DOI 10.1016/j.camwa.2024.12.013
    Type Journal Article
    Author Bringmann P
    Journal Computers & Mathematics with Applications
    Pages 102-129
    Link Publication
  • 2024
    Title Discrete Helmholtz Decompositions of Piecewise Constant and Piecewise Affine Vector and Tensor Fields
    DOI 10.1007/s10208-024-09642-1
    Type Journal Article
    Author Bringmann P
    Journal Foundations of Computational Mathematics
    Pages 417-461
    Link Publication
  • 2024
    Title Corrigendum to: Adaptive FEM with quasi-optimal overall cost for nonsymmetric linear elliptic PDEs
    DOI 10.1093/imanum/drad103
    Type Journal Article
    Author Brunner M
    Journal IMA Journal of Numerical Analysis
    Pages 1903-1909
    Link Publication
  • 2022
    Title Goal-oriented adaptivity for multilevel stochastic Galerkin FEM with nonlinear goal functionals
    DOI 10.48550/arxiv.2208.09388
    Type Preprint
    Author Bespalov A
  • 2021
    Title Energy Contraction and Optimal Convergence of Adaptive Iterative Linearized Finite Element Methods
    DOI 10.1515/cmam-2021-0025
    Type Journal Article
    Author Heid P
    Journal Computational Methods in Applied Mathematics
    Pages 407-422
    Link Publication
  • 2021
    Title Convergence and rate optimality of adaptive multilevel stochastic Galerkin FEM
    DOI 10.1093/imanum/drab036
    Type Journal Article
    Author Bespalov A
    Journal IMA Journal of Numerical Analysis
    Pages 2190-2213
    Link Publication
  • 2021
    Title Two-Level a Posteriori Error Estimation for Adaptive Multilevel Stochastic Galerkin Finite Element Method
    DOI 10.1137/20m1342586
    Type Journal Article
    Author Bespalov A
    Journal SIAM/ASA Journal on Uncertainty Quantification
    Pages 1184-1216
    Link Publication
  • 2024
    Title Review and computational comparison of adaptive least-squares finite element schemes Image 1
    DOI 10.1016/j.camwa.2024.07.022
    Type Journal Article
    Author Bringmann P
    Journal Computers & Mathematics with Applications
    Pages 1-15
    Link Publication
  • 2020
    Title Optimal Convergence Rates for Goal-Oriented FEM with Quadratic Goal Functional
    DOI 10.1515/cmam-2020-0044
    Type Journal Article
    Author Becker R
    Journal Computational Methods in Applied Mathematics
    Pages 267-288
    Link Publication
  • 2020
    Title A short note on plain convergence of adaptive least-squares finite element methods
    DOI 10.1016/j.camwa.2020.07.022
    Type Journal Article
    Author Führer T
    Journal Computers & Mathematics with Applications
    Pages 1619-1632
    Link Publication
  • 2021
    Title Quasi-optimal convergence rate for an adaptive method for the integral fractional Laplacian
    DOI 10.1090/mcom/3603
    Type Journal Article
    Author Faustmann M
    Journal Mathematics of Computation
    Pages 1557-1587
    Link Publication
  • 2021
    Title Plain convergence of adaptive algorithms without exploiting reliability and efficiency
    DOI 10.1093/imanum/drab010
    Type Journal Article
    Author Gantner G
    Journal IMA Journal of Numerical Analysis
    Pages 1434-1453
    Link Publication
  • 2021
    Title Convergence and quasi-optimal cost of adaptive algorithms for nonlinear operators including iterative linearization and algebraic solver
    DOI 10.1007/s00211-021-01176-w
    Type Journal Article
    Author Haberl A
    Journal Numerische Mathematik
    Pages 679-725
    Link Publication
  • 2021
    Title Rate optimality of adaptive finite element methods with respect to overall computational costs
    DOI 10.1090/mcom/3654
    Type Journal Article
    Author Gantner G
    Journal Mathematics of Computation
    Pages 2011-2040
    Link Publication
  • 2024
    Title Iterative solvers in adaptive FEM: Adaptivity yields quasi-optimal computational runtime
    DOI 10.1016/bs.aams.2024.08.002
    Type Book Chapter
    Author Bringmann P
    Publisher Elsevier
    Pages 147-212
  • 2024
    Title Optimal complexity of goal-oriented adaptive FEM for nonsymmetric linear elliptic PDEs
    DOI 10.1515/jnma-2023-0150
    Type Journal Article
    Author Bringmann P
    Journal Journal of Numerical Mathematics
    Link Publication
  • 2022
    Title Goal-oriented adaptive finite element methods with optimal computational complexity
    DOI 10.1007/s00211-022-01334-8
    Type Journal Article
    Author Becker R
    Journal Numerische Mathematik
    Pages 111-140
    Link Publication
  • 2022
    Title How to prove optimal convergence rates for adaptive least-squares finite element methods
    DOI 10.1515/jnma-2021-0116
    Type Journal Article
    Author Bringmann P
    Journal Journal of Numerical Mathematics
    Pages 43-58
  • 2022
    Title Rate-optimal goal-oriented adaptive FEM for semilinear elliptic PDEs
    DOI 10.1016/j.camwa.2022.05.008
    Type Journal Article
    Author Becker R
    Journal Computers & Mathematics with Applications
    Pages 18-35
    Link Publication
  • 2022
    Title Review and computational comparison of adaptive least-squares finite element schemes
    DOI 10.48550/arxiv.2209.06028
    Type Preprint
    Author Bringmann P

Discovering
what
matters.

Newsletter

FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

Contact

Austrian Science Fund (FWF)
Georg-Coch-Platz 2
(Entrance Wiesingerstraße 4)
1010 Vienna

office(at)fwf.ac.at
+43 1 505 67 40

General information

  • Job Openings
  • Jobs at FWF
  • Press
  • Philanthropy
  • scilog
  • FWF Office
  • Social Media Directory
  • LinkedIn, external URL, opens in a new window
  • Twitter, external URL, opens in a new window
  • Facebook, external URL, opens in a new window
  • Instagram, external URL, opens in a new window
  • YouTube, external URL, opens in a new window
  • Cookies
  • Whistleblowing/Complaints Management
  • Accessibility Statement
  • Data Protection
  • Acknowledgements
  • Social Media Directory
  • © Österreichischer Wissenschaftsfonds FWF
© Österreichischer Wissenschaftsfonds FWF