• Skip to content (access key 1)
  • Skip to search (access key 7)
FWF — Austrian Science Fund
  • Go to overview page Discover

    • Research Radar
    • Discoveries
      • Emmanuelle Charpentier
      • Adrian Constantin
      • Monika Henzinger
      • Ferenc Krausz
      • Wolfgang Lutz
      • Walter Pohl
      • Christa Schleper
      • Anton Zeilinger
    • scilog Magazine
    • Awards
      • FWF Wittgenstein Awards
      • FWF START Awards
    • excellent=austria
      • Clusters of Excellence
      • Emerging Fields
    • In the Spotlight
      • 40 Years of Erwin Schrödinger Fellowships
      • Quantum Austria
    • Dialogs and Talks
      • think.beyond Summit
    • E-Book Library
  • Go to overview page Funding

    • Portfolio
      • excellent=austria
        • Clusters of Excellence
        • Emerging Fields
      • Projects
        • Principal Investigator Projects
        • Principal Investigator Projects International
        • Clinical Research
        • 1000 Ideas
        • Arts-Based Research
        • FWF Wittgenstein Award
      • Careers
        • ESPRIT
        • FWF ASTRA Awards
        • Erwin Schrödinger
        • Elise Richter
        • Elise Richter PEEK
        • doc.funds
        • doc.funds.connect
      • Collaborations
        • Specialized Research Groups
        • Special Research Areas
        • Research Groups
        • International – Multilateral Initiatives
        • #ConnectingMinds
      • Communication
        • Top Citizen Science
        • Science Communication
        • Book Publications
        • Digital Publications
        • Open-Access Block Grant
      • Subject-Specific Funding
        • AI Mission Austria
        • Belmont Forum
        • ERA-NET HERA
        • ERA-NET NORFACE
        • ERA-NET QuantERA
        • ERA-NET TRANSCAN
        • Alternative Methods to Animal Testing
        • European Partnership Biodiversa+
        • European Partnership ERA4Health
        • European Partnership ERDERA
        • European Partnership EUPAHW
        • European Partnership FutureFoodS
        • European Partnership OHAMR
        • European Partnership PerMed
        • European Partnership Water4All
        • Gottfried and Vera Weiss Award
        • netidee SCIENCE
        • Herzfelder Foundation Projects
        • Quantum Austria
        • Rückenwind Funding Bonus
        • Zero Emissions Award
      • International Collaborations
        • Belgium/Flanders
        • Germany
        • France
        • Italy/South Tyrol
        • Japan
        • Luxembourg
        • Poland
        • Switzerland
        • Slovenia
        • Taiwan
        • Tyrol–South Tyrol–Trentino
        • Czech Republic
        • Hungary
    • Step by Step
      • Find Funding
      • Submitting Your Application
      • International Peer Review
      • Funding Decisions
      • Carrying out Your Project
      • Closing Your Project
      • Further Information
        • Integrity and Ethics
        • Inclusion
        • Applying from Abroad
        • Personnel Costs
        • PROFI
        • Final Project Reports
        • Final Project Report Survey
    • FAQ
      • Project Phase PROFI
        • Accounting for Approved Funds
        • Labor and Social Law
        • Project Management
      • Project Phase Ad Personam
        • Accounting for Approved Funds
        • Labor and Social Law
        • Project Management
      • Expiring Programs
        • FWF START Awards
  • Go to overview page About Us

    • Mission Statement
    • FWF Video
    • Values
    • Facts and Figures
    • Annual Report
    • What We Do
      • Research Funding
        • Matching Funds Initiative
      • International Collaborations
      • Studies and Publications
      • Equal Opportunities and Diversity
        • Objectives and Principles
        • Measures
        • Creating Awareness of Bias in the Review Process
        • Terms and Definitions
        • Your Career in Cutting-Edge Research
      • Open Science
        • Open Access Policy
          • Open Access Policy for Peer-Reviewed Publications
          • Open Access Policy for Peer-Reviewed Book Publications
          • Open Access Policy for Research Data
        • Research Data Management
        • Citizen Science
        • Open Science Infrastructures
        • Open Science Funding
      • Evaluations and Quality Assurance
      • Academic Integrity
      • Science Communication
      • Philanthropy
      • Sustainability
    • History
    • Legal Basis
    • Organization
      • Executive Bodies
        • Executive Board
        • Supervisory Board
        • Assembly of Delegates
        • Scientific Board
        • Juries
      • FWF Office
    • Jobs at FWF
  • Go to overview page News

    • News
    • Press
      • Logos
    • Calendar
      • Post an Event
      • FWF Informational Events
    • Job Openings
      • Enter Job Opening
    • Newsletter
  • Discovering
    what
    matters.

    FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

    SOCIAL MEDIA

    • LinkedIn, external URL, opens in a new window
    • Twitter, external URL, opens in a new window
    • Facebook, external URL, opens in a new window
    • Instagram, external URL, opens in a new window
    • YouTube, external URL, opens in a new window

    SCILOG

    • Scilog — The science magazine of the Austrian Science Fund (FWF)
  • elane login, external URL, opens in a new window
  • Scilog external URL, opens in a new window
  • de Wechsle zu Deutsch

  

Black-box quantum information under spacetime symmetries

Black-box quantum information under spacetime symmetries

Markus Müller (ORCID: 0000-0002-8086-5586)
  • Grant DOI 10.55776/P33730
  • Funding program Principal Investigator Projects
  • Status ended
  • Start May 1, 2021
  • End April 30, 2025
  • Funding amount € 599,634
  • E-mail

Disciplines

Physics, Astronomy (100%)

Keywords

    Quantum Information Theory, Group Representation Theory, Quantum Foundations, Device-Independent Quantum Information

Abstract

Quantum theory has not only revolutionized our understanding of physics, but it has also led to a multitude of technological applications in information theory. For example, quantum physics admits unconditionally secure cryptography or the generation of provably random numbers. In black box quantum information theory, this approach is taken one step further: security of cryptography or randomness can be guaranteed even if the devices involved in the protocol are untrusted (device-independence), or even if the validity of quantum theory itself is not taken for granted. In this setting, security follows solely from the observed statistics of the devices (seen as black boxes) and from simple physical principles, without any further assumptions. Previous research has focused on black boxes with abstract inputs and outputs, like abstract bits (zeros and ones) as commonly used in information theory. But in many actual experiments, the inputs and outputs are not abstract, but concrete spatiotemporal quantities like the spatial direction of a magnetic field, the duration of a pulse, or the angle of a polarizer. The goal of this project is to theoretically analyze the foundations and applications of such spatiotemporal black boxes. On the one hand, we hope that this analysis will give us fundamental insights into the relation between quantum theory, space and time: how do the statistical predictions of quantum theory fit into space and time? For example, do spatiotemporal symmetries constrain the probabilities of detector clicks, or the correlations between distant events, even without assuming the validity of quantum theory? What can we conclude with certainty if we build an experiment, set up temporal pulses or spatial fields, and then measure a certain statistics? Can we construct fundamentally new tests of quantum theory in this setting? On the other hand, we will explore how these insights can be put to use in quantum information theory, in particular in the context of semi-device-independent protocols. The security of such protocols is often based on abstract assumptions about the involved quantum systems, such as upper bounds on the information content of the transmitted systems. One goal of this research is to replace such abstract assumptions by more concrete, physically better motivated suppositions, in particular assumptions about the interplay of the systems with space and time. Furthermore, we hope to obtain new methods to detect the presence of so-called Bell nonlocality in realistic quantum systems.

Research institution(s)
  • Österreichische Akademie der Wissenschaften - 100%
Project participants
  • Caslav Brukner, Österreichische Akademie der Wissenschaften , national collaboration partner
International project participants
  • Valerio Scarani, National University of Singapore - Singapore

Research Output

  • 3 Citations
  • 2 Publications
Publications
  • 2024
    Title Spin-Bounded Correlations: Rotation Boxes Within and Beyond Quantum Theory
    DOI 10.1007/s00220-024-05123-2
    Type Journal Article
    Author Aloy A
    Journal Communications in Mathematical Physics
    Pages 292
    Link Publication
  • 2024
    Title Deriving Three-Outcome Permutationally Invariant Bell Inequalities
    DOI 10.3390/e26100816
    Type Journal Article
    Author Aloy A
    Journal Entropy
    Pages 816
    Link Publication

Discovering
what
matters.

Newsletter

FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

Contact

Austrian Science Fund (FWF)
Georg-Coch-Platz 2
(Entrance Wiesingerstraße 4)
1010 Vienna

office(at)fwf.ac.at
+43 1 505 67 40

General information

  • Job Openings
  • Jobs at FWF
  • Press
  • Philanthropy
  • scilog
  • FWF Office
  • Social Media Directory
  • LinkedIn, external URL, opens in a new window
  • Twitter, external URL, opens in a new window
  • Facebook, external URL, opens in a new window
  • Instagram, external URL, opens in a new window
  • YouTube, external URL, opens in a new window
  • Cookies
  • Whistleblowing/Complaints Management
  • Accessibility Statement
  • Data Protection
  • Acknowledgements
  • Social Media Directory
  • © Österreichischer Wissenschaftsfonds FWF
© Österreichischer Wissenschaftsfonds FWF