• Skip to content (access key 1)
  • Skip to search (access key 7)
FWF — Austrian Science Fund
  • Go to overview page Discover

    • Research Radar
    • Discoveries
      • Emmanuelle Charpentier
      • Adrian Constantin
      • Monika Henzinger
      • Ferenc Krausz
      • Wolfgang Lutz
      • Walter Pohl
      • Christa Schleper
      • Anton Zeilinger
    • scilog Magazine
    • Awards
      • FWF Wittgenstein Awards
      • FWF START Awards
    • excellent=austria
      • Clusters of Excellence
      • Emerging Fields
    • In the Spotlight
      • 40 Years of Erwin Schrödinger Fellowships
      • Quantum Austria
    • Dialogs and Talks
      • think.beyond Summit
    • E-Book Library
  • Go to overview page Funding

    • Portfolio
      • excellent=austria
        • Clusters of Excellence
        • Emerging Fields
      • Projects
        • Principal Investigator Projects
        • Principal Investigator Projects International
        • Clinical Research
        • 1000 Ideas
        • Arts-Based Research
        • FWF Wittgenstein Award
      • Careers
        • ESPRIT
        • FWF ASTRA Awards
        • Erwin Schrödinger
        • Elise Richter
        • Elise Richter PEEK
        • doc.funds
        • doc.funds.connect
      • Collaborations
        • Specialized Research Groups
        • Special Research Areas
        • Research Groups
        • International – Multilateral Initiatives
        • #ConnectingMinds
      • Communication
        • Top Citizen Science
        • Science Communication
        • Book Publications
        • Digital Publications
        • Open-Access Block Grant
      • Subject-Specific Funding
        • AI Mission Austria
        • Belmont Forum
        • ERA-NET HERA
        • ERA-NET NORFACE
        • ERA-NET QuantERA
        • ERA-NET TRANSCAN
        • Alternative Methods to Animal Testing
        • European Partnership Biodiversa+
        • European Partnership ERA4Health
        • European Partnership ERDERA
        • European Partnership EUPAHW
        • European Partnership FutureFoodS
        • European Partnership OHAMR
        • European Partnership PerMed
        • European Partnership Water4All
        • Gottfried and Vera Weiss Award
        • netidee SCIENCE
        • Herzfelder Foundation Projects
        • Quantum Austria
        • Rückenwind Funding Bonus
        • Zero Emissions Award
      • International Collaborations
        • Belgium/Flanders
        • Germany
        • France
        • Italy/South Tyrol
        • Japan
        • Luxembourg
        • Poland
        • Switzerland
        • Slovenia
        • Taiwan
        • Tyrol–South Tyrol–Trentino
        • Czech Republic
        • Hungary
    • Step by Step
      • Find Funding
      • Submitting Your Application
      • International Peer Review
      • Funding Decisions
      • Carrying out Your Project
      • Closing Your Project
      • Further Information
        • Integrity and Ethics
        • Inclusion
        • Applying from Abroad
        • Personnel Costs
        • PROFI
        • Final Project Reports
        • Final Project Report Survey
    • FAQ
      • Project Phase PROFI
        • Accounting for Approved Funds
        • Labor and Social Law
        • Project Management
      • Project Phase Ad Personam
        • Accounting for Approved Funds
        • Labor and Social Law
        • Project Management
      • Expiring Programs
        • FWF START Awards
  • Go to overview page About Us

    • Mission Statement
    • FWF Video
    • Values
    • Facts and Figures
    • Annual Report
    • What We Do
      • Research Funding
        • Matching Funds Initiative
      • International Collaborations
      • Studies and Publications
      • Equal Opportunities and Diversity
        • Objectives and Principles
        • Measures
        • Creating Awareness of Bias in the Review Process
        • Terms and Definitions
        • Your Career in Cutting-Edge Research
      • Open Science
        • Open Access Policy
          • Open Access Policy for Peer-Reviewed Publications
          • Open Access Policy for Peer-Reviewed Book Publications
          • Open Access Policy for Research Data
        • Research Data Management
        • Citizen Science
        • Open Science Infrastructures
        • Open Science Funding
      • Evaluations and Quality Assurance
      • Academic Integrity
      • Science Communication
      • Philanthropy
      • Sustainability
    • History
    • Legal Basis
    • Organization
      • Executive Bodies
        • Executive Board
        • Supervisory Board
        • Assembly of Delegates
        • Scientific Board
        • Juries
      • FWF Office
    • Jobs at FWF
  • Go to overview page News

    • News
    • Press
      • Logos
    • Calendar
      • Post an Event
      • FWF Informational Events
    • Job Openings
      • Enter Job Opening
    • Newsletter
  • Discovering
    what
    matters.

    FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

    SOCIAL MEDIA

    • LinkedIn, external URL, opens in a new window
    • Twitter, external URL, opens in a new window
    • Facebook, external URL, opens in a new window
    • Instagram, external URL, opens in a new window
    • YouTube, external URL, opens in a new window

    SCILOG

    • Scilog — The science magazine of the Austrian Science Fund (FWF)
  • elane login, external URL, opens in a new window
  • Scilog external URL, opens in a new window
  • de Wechsle zu Deutsch

  

Generalized contextuality in large quantum systems

Generalized contextuality in large quantum systems

Markus Müller (ORCID: 0000-0002-8086-5586)
  • Grant DOI 10.55776/PAT2839723
  • Funding program Principal Investigator Projects
  • Status ongoing
  • Start April 1, 2024
  • End March 31, 2026
  • Funding amount € 380,266
  • E-mail

Disciplines

Physics, Astronomy (100%)

Keywords

    Contextuality, Certification, Generalized Probabilistic Theories, Nonclassicality, Quantum Foundations, Quantum Information

Abstract

Quantum theory promises technological applications that would be impossible within classical physics: faster computation, more accurate metrology, or the generation of provably secure random numbers. However, to make this work, we first need to test whether our devices are really quantum and work as desired a task called certification. This is not only relevant for technology, but also for fundamental physics: given some large physical system, such as a Bose-Einstein condensate, how can we prove that its properties cannot be explained by classical physics? In other words, how can we certify its nonclassicality? In this project, we will develop a new method to do so, both theoretically (via mathematical proofs and conceptual argumentation) and experimentally (with concrete data supplied by colleagues at ETH Zurich). Our approach is based on the phenomenon of contextuality: properties of quantum systems cannot be independent of the choice of implementation of the measurement procedures. In other words, if we ask Nature a question, then the answer must sometimes depend on the experimental context. Here, we develop methods that allow us to certify this phenomenon in physical systems even if they are very large and can only be probed in coarse and incomplete ways, and even if we know nothing about their composition, time evolution, or the physical theory that describes them. Our project will improve upon earlier work in several respects. Most earlier attempts to certify nonclassicality in large quantum systems have relied on the notion of Bell nonlocality: correlations between several particles cannot be explained by any local hidden- variable model. However, this has only been possible under strong additional assumptions, since it is impossible to measure all particles of a large quantum system individually. Moreover, both the experimental detection as well as the theoretical definition of contextuality (in the sense that is relevant for our project) has been restricted to situations in which the experimenter can measure all properties of the physical system completely and exhaustively (tomographic completeness). In our project, we will drop these assumptions and develop methods that are device- and theory-independent and that work with coarse and incomplete experimental data. Our projects spans quantum physics from its philosophical foundations up to its experimental implementation. Conceptually, we will shed light on the question of how coarse experimental data can render a microscopic theory implausible. Mathematically, we will develop methods that can certify this notion of contextuality with algorithms and inequalities. Finally, we will apply our results to concrete experimental data from nanomechanical oscillators and Bose-Einstein condensates.

Research institution(s)
  • Österreichische Akademie der Wissenschaften - 100%
International project participants
  • Matteo Fadel, ETH Zürich - Switzerland

Research Output

  • 2 Citations
  • 2 Publications
Publications
  • 2024
    Title Effects of topological boundary conditions on Bell nonlocality
    DOI 10.1103/physreva.110.032201
    Type Journal Article
    Author Emonts P
    Journal Physical Review A
    Pages 032201
    Link Publication
  • 2024
    Title Deriving Three-Outcome Permutationally Invariant Bell Inequalities
    DOI 10.3390/e26100816
    Type Journal Article
    Author Aloy A
    Journal Entropy
    Pages 816
    Link Publication

Discovering
what
matters.

Newsletter

FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

Contact

Austrian Science Fund (FWF)
Georg-Coch-Platz 2
(Entrance Wiesingerstraße 4)
1010 Vienna

office(at)fwf.ac.at
+43 1 505 67 40

General information

  • Job Openings
  • Jobs at FWF
  • Press
  • Philanthropy
  • scilog
  • FWF Office
  • Social Media Directory
  • LinkedIn, external URL, opens in a new window
  • Twitter, external URL, opens in a new window
  • Facebook, external URL, opens in a new window
  • Instagram, external URL, opens in a new window
  • YouTube, external URL, opens in a new window
  • Cookies
  • Whistleblowing/Complaints Management
  • Accessibility Statement
  • Data Protection
  • Acknowledgements
  • Social Media Directory
  • © Österreichischer Wissenschaftsfonds FWF
© Österreichischer Wissenschaftsfonds FWF