• Skip to content (access key 1)
  • Skip to search (access key 7)
FWF — Austrian Science Fund
  • Go to overview page Discover

    • Research Radar
    • Discoveries
      • Emmanuelle Charpentier
      • Adrian Constantin
      • Monika Henzinger
      • Ferenc Krausz
      • Wolfgang Lutz
      • Walter Pohl
      • Christa Schleper
      • Anton Zeilinger
    • scilog Magazine
    • Awards
      • FWF Wittgenstein Awards
      • FWF START Awards
    • excellent=austria
      • Clusters of Excellence
      • Emerging Fields
    • In the Spotlight
      • 40 Years of Erwin Schrödinger Fellowships
      • Quantum Austria
    • Dialogs and Talks
      • think.beyond Summit
    • E-Book Library
  • Go to overview page Funding

    • Portfolio
      • excellent=austria
        • Clusters of Excellence
        • Emerging Fields
      • Projects
        • Principal Investigator Projects
        • Principal Investigator Projects International
        • Clinical Research
        • 1000 Ideas
        • Arts-Based Research
        • FWF Wittgenstein Award
      • Careers
        • ESPRIT
        • FWF ASTRA Awards
        • Erwin Schrödinger
        • Elise Richter
        • Elise Richter PEEK
        • doc.funds
        • doc.funds.connect
      • Collaborations
        • Specialized Research Groups
        • Special Research Areas
        • Research Groups
        • International – Multilateral Initiatives
        • #ConnectingMinds
      • Communication
        • Top Citizen Science
        • Science Communication
        • Book Publications
        • Digital Publications
        • Open-Access Block Grant
      • Subject-Specific Funding
        • AI Mission Austria
        • Belmont Forum
        • ERA-NET HERA
        • ERA-NET NORFACE
        • ERA-NET QuantERA
        • ERA-NET TRANSCAN
        • Alternative Methods to Animal Testing
        • European Partnership Biodiversa+
        • European Partnership ERA4Health
        • European Partnership ERDERA
        • European Partnership EUPAHW
        • European Partnership FutureFoodS
        • European Partnership OHAMR
        • European Partnership PerMed
        • European Partnership Water4All
        • Gottfried and Vera Weiss Award
        • netidee SCIENCE
        • Herzfelder Foundation Projects
        • Quantum Austria
        • Rückenwind Funding Bonus
        • Zero Emissions Award
      • International Collaborations
        • Belgium/Flanders
        • Germany
        • France
        • Italy/South Tyrol
        • Japan
        • Luxembourg
        • Poland
        • Switzerland
        • Slovenia
        • Taiwan
        • Tyrol–South Tyrol–Trentino
        • Czech Republic
        • Hungary
    • Step by Step
      • Find Funding
      • Submitting Your Application
      • International Peer Review
      • Funding Decisions
      • Carrying out Your Project
      • Closing Your Project
      • Further Information
        • Integrity and Ethics
        • Inclusion
        • Applying from Abroad
        • Personnel Costs
        • PROFI
        • Final Project Reports
        • Final Project Report Survey
    • FAQ
      • Project Phase PROFI
        • Accounting for Approved Funds
        • Labor and Social Law
        • Project Management
      • Project Phase Ad Personam
        • Accounting for Approved Funds
        • Labor and Social Law
        • Project Management
      • Expiring Programs
        • FWF START Awards
  • Go to overview page About Us

    • Mission Statement
    • FWF Video
    • Values
    • Facts and Figures
    • Annual Report
    • What We Do
      • Research Funding
        • Matching Funds Initiative
      • International Collaborations
      • Studies and Publications
      • Equal Opportunities and Diversity
        • Objectives and Principles
        • Measures
        • Creating Awareness of Bias in the Review Process
        • Terms and Definitions
        • Your Career in Cutting-Edge Research
      • Open Science
        • Open Access Policy
          • Open Access Policy for Peer-Reviewed Publications
          • Open Access Policy for Peer-Reviewed Book Publications
          • Open Access Policy for Research Data
        • Research Data Management
        • Citizen Science
        • Open Science Infrastructures
        • Open Science Funding
      • Evaluations and Quality Assurance
      • Academic Integrity
      • Science Communication
      • Philanthropy
      • Sustainability
    • History
    • Legal Basis
    • Organization
      • Executive Bodies
        • Executive Board
        • Supervisory Board
        • Assembly of Delegates
        • Scientific Board
        • Juries
      • FWF Office
    • Jobs at FWF
  • Go to overview page News

    • News
    • Press
      • Logos
    • Calendar
      • Post an Event
      • FWF Informational Events
    • Job Openings
      • Enter Job Opening
    • Newsletter
  • Discovering
    what
    matters.

    FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

    SOCIAL MEDIA

    • LinkedIn, external URL, opens in a new window
    • Twitter, external URL, opens in a new window
    • Facebook, external URL, opens in a new window
    • Instagram, external URL, opens in a new window
    • YouTube, external URL, opens in a new window

    SCILOG

    • Scilog — The science magazine of the Austrian Science Fund (FWF)
  • elane login, external URL, opens in a new window
  • Scilog external URL, opens in a new window
  • de Wechsle zu Deutsch

  

QBF Proofs and Certificates

QBF Proofs and Certificates

Leroy Chew (ORCID: 0000-0003-0226-2832)
  • Grant DOI 10.55776/ESP197
  • Funding program ESPRIT
  • Status ongoing
  • Start August 29, 2022
  • End August 28, 2025
  • Funding amount € 294,016
  • Project website
  • E-mail

Disciplines

Computer Sciences (100%)

Keywords

    Proof Complexity, Quantified Boolean Formulas, QBF Proof Complexity, QBF Certification, QBF Satisfiability, Dependency Quantified Boolean Formulas

Abstract

Imagine a mathematical theorem, many people would be familiar with simple work like The Sum of Angles of a Triangle or more famous theorems like Fermat`s Last Theorem. Mathematicians are valued not only for their insights for coming up with these theorems, but finding proofs that confirm that these theorems will remain true no matter how many advances are made in mathematics. Theorems which have proofs, will remain uncontradicted for the rest of eternity. While proofs were an important part of the study of classically mathematical objects, such as numbers, functions and equations. It took until the 20th century for proofs to be taken seriously as mathematical objects themselves, with the work of the Austrian logician Godel and many others. In modern times, proofs are not only studied as an intricate part of mathematical proof theory as well as the philosophy of logic, but unmistakeably part of modern computing. Proofs are part of payment authentication, hardware verification and security. With computing in mind, we are best understanding proofs in its most natural form as a certificate of logical truths (1s) and falsities (0s), certifying the solutions to computing problems that also work in binary. Most of the time we want proofs to be as small as possible, so that uploading our proofs to a third party has a minimal effect on the time it takes to complete a task. We ask the fundamental question in our line of research: how small can we make our proofs? Size, here is measured in the number of binary b its we need to express our proofs. And we understand the size of a proof may depends on a theorem, as the size of a theorem gets bigger we can reasonably expect the size of a proof to grow bigger, but how much bigger? If a proof size grows exponentially in the size of a theorem, we would have no hope to deal with practical applications. Hence the field of Proof Complexity is made to study these. Our research looks at a particular type of logic: Quantified Boolean Formulas (QBF), specifically developed to reformulate difficult problems in computer science as logic problems. Our aim is to go into finer detail on how to make proofs shorter for a wide array of applications. In particular we take inspiration from advances made in the practical task of solving QBFs and hope we can design a robust way of verifying their solutions. Our work sits in-between the practical science of solving and the theoretical science of proof theory. Beyond the verification aims of our work, we also hope to have an impact and inspira tion on this wider practice and theory.

Research institution(s)
  • Technische Universität Wien - 100%
Project participants
  • Friedrich Slivovsky, Technische Universität Wien , national collaboration partner

Discovering
what
matters.

Newsletter

FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

Contact

Austrian Science Fund (FWF)
Georg-Coch-Platz 2
(Entrance Wiesingerstraße 4)
1010 Vienna

office(at)fwf.ac.at
+43 1 505 67 40

General information

  • Job Openings
  • Jobs at FWF
  • Press
  • Philanthropy
  • scilog
  • FWF Office
  • Social Media Directory
  • LinkedIn, external URL, opens in a new window
  • Twitter, external URL, opens in a new window
  • Facebook, external URL, opens in a new window
  • Instagram, external URL, opens in a new window
  • YouTube, external URL, opens in a new window
  • Cookies
  • Whistleblowing/Complaints Management
  • Accessibility Statement
  • Data Protection
  • Acknowledgements
  • Social Media Directory
  • © Österreichischer Wissenschaftsfonds FWF
© Österreichischer Wissenschaftsfonds FWF