• Skip to content (access key 1)
  • Skip to search (access key 7)
FWF — Austrian Science Fund
  • Go to overview page Discover

    • Research Radar
      • Research Radar Archives 1974–1994
    • Discoveries
      • Emmanuelle Charpentier
      • Adrian Constantin
      • Monika Henzinger
      • Ferenc Krausz
      • Wolfgang Lutz
      • Walter Pohl
      • Christa Schleper
      • Elly Tanaka
      • Anton Zeilinger
    • Impact Stories
      • Verena Gassner
      • Wolfgang Lechner
      • Georg Winter
    • scilog Magazine
    • Austrian Science Awards
      • FWF Wittgenstein Awards
      • FWF ASTRA Awards
      • FWF START Awards
      • Award Ceremony
    • excellent=austria
      • Clusters of Excellence
      • Emerging Fields
    • In the Spotlight
      • 40 Years of Erwin Schrödinger Fellowships
      • Quantum Austria
    • Dialogs and Talks
      • think.beyond Summit
    • Knowledge Transfer Events
    • E-Book Library
  • Go to overview page Funding

    • Portfolio
      • excellent=austria
        • Clusters of Excellence
        • Emerging Fields
      • Projects
        • Principal Investigator Projects
        • Principal Investigator Projects International
        • Clinical Research
        • 1000 Ideas
        • Arts-Based Research
        • FWF Wittgenstein Award
      • Careers
        • ESPRIT
        • FWF ASTRA Awards
        • Erwin Schrödinger
        • doc.funds
        • doc.funds.connect
      • Collaborations
        • Specialized Research Groups
        • Special Research Areas
        • Research Groups
        • International – Multilateral Initiatives
        • #ConnectingMinds
      • Communication
        • Top Citizen Science
        • Science Communication
        • Book Publications
        • Digital Publications
        • Open-Access Block Grant
      • Subject-Specific Funding
        • AI Mission Austria
        • Belmont Forum
        • ERA-NET HERA
        • ERA-NET NORFACE
        • ERA-NET QuantERA
        • ERA-NET TRANSCAN
        • Alternative Methods to Animal Testing
        • European Partnership Biodiversa+
        • European Partnership BrainHealth
        • European Partnership ERA4Health
        • European Partnership ERDERA
        • European Partnership EUPAHW
        • European Partnership FutureFoodS
        • European Partnership OHAMR
        • European Partnership PerMed
        • European Partnership Water4All
        • Gottfried and Vera Weiss Award
        • netidee SCIENCE
        • Herzfelder Foundation Projects
        • Quantum Austria
        • RĂŒckenwind Funding Bonus
        • WE&ME Award
        • Zero Emissions Award
      • International Collaborations
        • Belgium/Flanders
        • Germany
        • France
        • Italy/South Tyrol
        • Japan
        • Luxembourg
        • Poland
        • Switzerland
        • Slovenia
        • Taiwan
        • Tyrol–South Tyrol–Trentino
        • Czech Republic
        • Hungary
    • Step by Step
      • Find Funding
      • Submitting Your Application
      • International Peer Review
      • Funding Decisions
      • Carrying out Your Project
      • Closing Your Project
      • Further Information
        • Integrity and Ethics
        • Inclusion
        • Applying from Abroad
        • Personnel Costs
        • PROFI
        • Final Project Reports
        • Final Project Report Survey
    • FAQ
      • Project Phase PROFI
      • Project Phase Ad Personam
      • Expiring Programs
        • Elise Richter and Elise Richter PEEK
        • FWF START Awards
  • Go to overview page About Us

    • Mission Statement
    • FWF Video
    • Values
    • Facts and Figures
    • Annual Report
    • What We Do
      • Research Funding
        • Matching Funds Initiative
      • International Collaborations
      • Studies and Publications
      • Equal Opportunities and Diversity
        • Objectives and Principles
        • Measures
        • Creating Awareness of Bias in the Review Process
        • Terms and Definitions
        • Your Career in Cutting-Edge Research
      • Open Science
        • Open-Access Policy
          • Open-Access Policy for Peer-Reviewed Publications
          • Open-Access Policy for Peer-Reviewed Book Publications
          • Open-Access Policy for Research Data
        • Research Data Management
        • Citizen Science
        • Open Science Infrastructures
        • Open Science Funding
      • Evaluations and Quality Assurance
      • Academic Integrity
      • Science Communication
      • Philanthropy
      • Sustainability
    • History
    • Legal Basis
    • Organization
      • Executive Bodies
        • Executive Board
        • Supervisory Board
        • Assembly of Delegates
        • Scientific Board
        • Juries
      • FWF Office
    • Jobs at FWF
  • Go to overview page News

    • News
    • Press
      • Logos
    • Calendar
      • Post an Event
      • FWF Informational Events
    • Job Openings
      • Enter Job Opening
    • Newsletter
  • Discovering
    what
    matters.

    FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

    SOCIAL MEDIA

    • LinkedIn, external URL, opens in a new window
    • , external URL, opens in a new window
    • Facebook, external URL, opens in a new window
    • Instagram, external URL, opens in a new window
    • YouTube, external URL, opens in a new window

    SCILOG

    • Scilog — The science magazine of the Austrian Science Fund (FWF)
  • elane login, external URL, opens in a new window
  • Scilog external URL, opens in a new window
  • de Wechsle zu Deutsch

  

Novel SiGe Nanostructures on Vicinal and High-Indexed Silicon Surfaces

Novel SiGe Nanostructures on Vicinal and High-Indexed Silicon Surfaces

Gunther Springholz (ORCID: 0000-0003-3133-4815)
  • Grant DOI 10.55776/P28185
  • Funding program Principal Investigator Projects
  • Status ended
  • Start September 1, 2015
  • End August 31, 2019
  • Funding amount € 354,098

Disciplines

Nanotechnology (20%); Physics, Astronomy (80%)

Keywords

    Silicon-Germanium, Molecular Beam Epitaxy, Scanning Tunneling Microscopy, Quantum Dots, Nanostructures

Abstract Final report

Self-assembled semiconductor nanostructures have attracted tremendous interest for fundamental research and applications due to their low-dimensional electronic density of states that can be tuned by size, shape and composition. According to prevailing understanding, their formation is based on the fundamental instability of strained layers against morphological perturbations driven by the addi- tional degrees of freedom provided by the surfaces thus exposed. In practice, the growth evolution is governed by a highly complex interplay between morphology, strain and composition that is strongly influenced by facet and edge energies as well as island-island interactions. These factors all mutually depend on each other and determine not only the overall energetics but also the kinetics of the sys- tem. As a result, even for the simple silicon-germanium model system constituted only of two types of atoms many aspects of growth are still not fully understood and several fundamental questions have remained open. The goal of this project is to clarify the crucial role of negative excess surface energies as well as edge energy contributions in self-assembled structures and to explore the new types of nanomorphologies induced by symmetry breaking on vicinal and high-indexed Si substrate surfaces and on lithograph- ically prepatterned substrate templates. For this purpose, we will combine cutting edge in situ and in vivo scanning tunneling microscopy and synchrotron scattering investigations with advanced theoret- ical modeling beyond current equilibrium approaches. By variable temperature scanning tunneling microscopy, we will record real time movies of growing surfaces that will reveal the nanomorphology evolution in all details. This will be compared to the theoretical predictions, forming a closely- coupled feed-back loop between theory and experiments. Our vision is to establish a powerful tool box for realization of novel nanostructures and architectures of nanowires and quantum dots with controllable shapes and configurations well suited for quantum electronic device applications. Par- ticular focus will be on the formation of one-dimensional nanowires and the realization of coupled nanowire / quantum dot systems. From the experimentally derived and theoretically predicted phase diagrams we will elucidate the critical role of facet and edge energies as well as of finite temperature and entropy effects that have been largely neglected in previous studies. This will significantly ad- vance the prevailing understanding of nucleation and growth of faceted surface nanostructures, fill- ing the gap between zero temperature equilibrium effects and kinetics. This will be applicable to a wide range of material systems. Beyond these goals, the obtained new types of nanostructures will open up new degrees of freedom in control, design, geometrical shaping and assembly of such struc- tures in novel architectures for nanoelectronic device applications.

Selbst-organisierte Halbleiter-Nanostrukturen sind von herausragendem Interesse fĂŒr die Grundlagenforschung als auch fĂŒr praktische Anwendungen in quantenelektronischen Bauelementen. Dies beruht auf der Quantisierung der elektronischen Zustandsdichte in Nanostrukturen, welche durch deren Form, GrĂ¶ĂŸe und Zusammensetzung eingestellt werden kann. Der zugrunde liegende Wachstumsprozess beruht auf der fundamentalen InstabilitĂ€t von verspannten epitaktischen Schichten auf einkristallinen Substraten, welche zur spontanen Ausbildung von dreidimensionalen Nanostrukturen fĂŒhrt. Die tatsĂ€chliche Evolution der Morphologie wird dabei durch ein Ă€ußerst komplexes Wechselspiel von Topographie, GrenzflĂ€chen, OberflĂ€che als auch Kantenenergien bestimmt. Diese hĂ€ngen wechselseitig voneinander ab und bestimmen nicht nur die Energetik, sondern auch die Kinetik des Systems. Erstmalig wurde in diesem Projekt in vivo Rastertunnelmikroskopie und Synchrotronstrahlung an EuropĂ€ischen Großforschungseinrichtungen genutzt, um die Wachstumsdynamik von Nanostrukturen auf verschiedenen SubstratoberflĂ€chen in Echtzeit unter realistischen Wachstums- und Temperbedingungen zu untersuchen. Insbesondere wurde bestimmt, wie sich durch Symmetriebrechung an verkippten und hochindizierten Substraten neuartige Nanostrukturen mit verschiedenen Nanogeometrien realisieren lassen, und welche Mechanismen dabei zu Grunde liegen. Facettierte Germanium NanodrĂ€hte wurden auf perfekt orientierten Silizium (001) Substraten erzeugt, mit mehreren hundert Nanometer LĂ€ngen aber Querschnitten von nur 2 - 20 nm. Durch Variation der Herstellungsbedingungen erhĂ€lt man entweder einzelne NanodrĂ€hte oder BĂŒndel, wobei mittels detaillierten Rastertunnelmikroskopie Untersuchungen dafĂŒr die kritischen Parameter bestimmt wurde. Dabei wurden STM "Filme" aufgenommen die die zeitliche Entwicklungen der NanodrĂ€hte fĂŒr das Wachstum als auch fĂŒr das Schrumpfen wiedergeben. Die Resultate bestimmen die StabilitĂ€t der NanodrĂ€hte als Funktion der GrĂ¶ĂŸe, was durch Untersuchung von asymmetrischen NanodrĂ€hten bestĂ€tigt wurde. Auf sehr stark verkippten Silizium Substraten wurde damit ein völlig neuer Wachstumsmodus entdeckt, der gut geordneten Nanogitter erzeugt, deren PeriodizitĂ€t, Geometrie und GrĂ¶ĂŸe deterministisch durch die Schichtdicke und Substratorientierung eingestellt werden kann. Eine ĂŒberraschende Eigenschaft dieser Nanogitter ist dass sie vollstĂ€ndig reversible sind, d.h., durch Tempern vollstĂ€ndig gelöscht aber auch wiederhergestellt werden können. Dieses herausragende Verhalten konnte durch Entropieeffekte, die durch die hohe Stufendichte auf verkippten OberflĂ€chen hervorgerufen wird, erklĂ€rt werden. Die damit abgeleiteten Wachstumsmodelle sind fĂŒr viele anderen Wachstumssysteme anwendbar. Damit werden neue Wege fĂŒr die kontrollierte Herstellung von neuartigen Nanostrukturen aufgezeigt, die fĂŒr technologische Anwendungen von Interesse sind.

Research institution(s)
  • UniversitĂ€t Linz - 100%
International project participants
  • Vaclav Holy, Charles University Prague - Czechia
  • Francesco Montalenti, Universita di Milano-Bicocca - Italy
  • Leo Miglio, Universita di Milano-Bicocca - Italy
  • Jerry D. Tersoff, IBM Corporation New York - USA

Research Output

  • 396 Citations
  • 13 Publications
Publications
  • 2020
    Title Entropy controlled fully reversible nanostructure formation of Ge on miscut vicinal Si (001) surfaces
    DOI 10.48550/arxiv.2002.06936
    Type Preprint
    Author Grossauer C
  • 2019
    Title Large magnetic gap at the Dirac point in Bi2Te3/MnBi2Te4 heterostructures
    DOI 10.1038/s41586-019-1826-7
    Type Journal Article
    Author Rienks E
    Journal Nature
    Pages 423-428
  • 2020
    Title Entropy-controlled fully reversible nanostructure formation of Ge on miscut vicinal Si(001) surfaces
    DOI 10.1103/physrevb.102.075420
    Type Journal Article
    Author Grossauer C
    Journal Physical Review B
    Pages 075420
    Link Publication
  • 2019
    Title Absorption edge, urbach tail, and electron-phonon interactions in topological insulator Bi2Se3 and band insulator (Bi0.89In0.11)2Se3
    DOI 10.1063/1.5080790
    Type Journal Article
    Author Zhu J
    Journal Applied Physics Letters
    Pages 162105
  • 2016
    Title Thermodynamic Self-Limiting Growth of Heteroepitaxial Islands Induced by Nonlinear Elastic Effect
    DOI 10.1021/acs.nanolett.6b01525
    Type Journal Article
    Author Hu H
    Journal Nano Letters
    Pages 3919-3924
  • 2018
    Title Dirac parameters and topological phase diagram of Pb1-xSnxSe from magnetospectroscopy
    DOI 10.1103/physrevb.98.245202
    Type Journal Article
    Author Krizman G
    Journal Physical Review B
    Pages 245202
    Link Publication
  • 2018
    Title Avoided level crossing at the magnetic field induced topological phase transition due to spin-orbital mixing
    DOI 10.1103/physrevb.98.161202
    Type Journal Article
    Author Krizman G
    Journal Physical Review B
    Pages 161202
    Link Publication
  • 2017
    Title Enhanced Telecom Emission from Single Group-IV Quantum Dots by Precise CMOS-Compatible Positioning in Photonic Crystal Cavities
    DOI 10.1021/acsphotonics.6b01045
    Type Journal Article
    Author Schatzl M
    Journal ACS Photonics
    Pages 665-673
    Link Publication
  • 2018
    Title Tunable Dirac interface states in topological superlattices
    DOI 10.1103/physrevb.98.075303
    Type Journal Article
    Author Krizman G
    Journal Physical Review B
    Pages 075303
    Link Publication
  • 2017
    Title Comment on “Thermodynamic Self-Limiting Growth of Heteroepitaxial Islands Induced by Nonlinear Elastic Effect”
    DOI 10.1021/acs.nanolett.6b04086
    Type Journal Article
    Author Daruka I
    Journal Nano Letters
    Pages 1371-1372
  • 2018
    Title Dirac parameters and topological phase diagram of Pb1-xSnxSe from magneto-spectroscopy
    DOI 10.48550/arxiv.1810.10490
    Type Preprint
    Author Krizman G
  • 2018
    Title Avoided level crossing at the magnetic field induced topological phase transition due to spin-orbital mixing
    DOI 10.48550/arxiv.1808.03361
    Type Preprint
    Author Krizman G
  • 2018
    Title Large magnetic gap at the Dirac point in a Mn-induced Bi$_2$Te$_3$ heterostructure
    DOI 10.48550/arxiv.1810.06238
    Type Preprint
    Author Rienks E

Discovering
what
matters.

Newsletter

FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

Contact

Austrian Science Fund (FWF)
Georg-Coch-Platz 2
(Entrance Wiesingerstraße 4)
1010 Vienna

office(at)fwf.ac.at
+43 1 505 67 40

General information

  • Job Openings
  • Jobs at FWF
  • Press
  • Philanthropy
  • scilog
  • FWF Office
  • Social Media Directory
  • LinkedIn, external URL, opens in a new window
  • , external URL, opens in a new window
  • Facebook, external URL, opens in a new window
  • Instagram, external URL, opens in a new window
  • YouTube, external URL, opens in a new window
  • Cookies
  • Whistleblowing/Complaints Management
  • Accessibility Statement
  • Data Protection
  • Acknowledgements
  • IFG-Form
  • Social Media Directory
  • © Österreichischer Wissenschaftsfonds FWF
© Österreichischer Wissenschaftsfonds FWF