Geometric Properties of Transcendental Functions
Geometric Properties of Transcendental Functions
Disciplines
Mathematics (100%)
Keywords
-
Existential Closedness,
Schanuel's conjecture,
Zilber-Pink conjecture,
Unlikely Intersections,
J-Function,
Ax-Schanuel
Many problems in mathematics involve finding solutions to equations. While in school we are taught methods for finding explicit values to the solutions of some simple equations, finding solutions when the equations involve many variables or if they involve unusual elements such as logarithms or trigonometric functions can be an extremely difficult task. In such cases, instead of trying to find the explicit values of some solutions, we can focus our attention to trying to understand the geometry of the set of solutions. For example, we may want to distinguish equations that have only finitely many solutions from equations that have infinitely many solutions. And if the equation has infinitely many solutions, then we would also want to know whether these solutions follow some specific pattern, so that if we happen to know one solution of the equation, then we can use the pattern to produce infinitely many more solutions. In my project I will be studying various kinds of systems of equations from a geometric point of view to try to understand the behaviour of the set of solutions. There are three main technical objectives in my research project, but main motivation for all of them is to show a specific kind of dichotomy regarding the behaviour of the set of solutions: either the solution sets follow some simple well- known patterns (and so they become predictable), or otherwise they exhibit no patterns at all. In other words, the general goal is to show that if the set of solutions to special systems of equations does not follow some rule already known to us, then the solutions are completely random. The objectives in this project are informed by some major open problems in mathematics which predict that the dichotomy in the sets of solutions as described above holds for many types of equations. In this sense, my research would provide additional evidence that the open problems are true. Questions like the ones motivating my work come from an area of number theory known as Unlikely Intersections. This is an important area of active research, and I hope to contribute to our understanding of these questions by combining techniques from different areas of mathematics, such as number theory, mathematical logic, and complex analysis. Bei vielen Problemen in der Mathematik geht es darum, Lösungen für Gleichungen zu finden. Während uns in der Schule Methoden zum Finden expliziter Werte für die Lösungen einiger einfacher Gleichungen beigebracht werden, kann es eine äußerst schwierige Aufgabe sein, Lösungen zu finden, wenn die Gleichungen viele Variablen oder ungewöhnliche Elemente wie Logarithmen oder trigonometrische Funktionen beinhalten. Anstatt zu versuchen, die expliziten Werte einiger Lösungen zu finden, können wir in solchen Fällen unsere Aufmerksamkeit darauf richten, die Geometrie der Lösungsmenge verstehen zu wollen. Beispielsweise möchten wir möglicherweise Gleichungen, die nur endlich viele Lösungen haben, von solchen, die unendlich viele Lösungen haben, unterscheiden. Und wenn die Gleichung unendlich viele Lösungen hat, dann möchten wir auch wissen, ob diese Lösungen einem bestimmten Muster folgen, sodass wir, wenn wir eine Lösung der Gleichung kennen, dieses Muster verwenden können, um unendlich viele weitere Lösungen zu erzeugen. In meinem Projekt werde ich verschiedene Arten von Gleichungssystemen aus geometrischer Sicht untersuchen, um zu versuchen, das Verhalten der Lösungsmenge zu verstehen. In meinem Forschungsprojekt gibt es drei technische Hauptziele, aber die Hauptmotivation für alle besteht darin, eine bestimmte Art von Dichotomie in Bezug auf das Verhalten der Lösungsmengen zu beweisen: Entweder folgen die Lösungsmengen einigen einfachen, bekannten Mustern (und werden dadurch berechenbar) oder sie weisen keinerlei Regelmäßigkeiten auf. Mit anderen Worten: Das allgemeine Ziel besteht darin zu zeigen, dass die Lösungen völlig zufällig sind, wenn die Lösungsmenge spezieller Gleichungssysteme keiner uns bereits bekannten Regel folgt. Die Ziele dieses Projekts sind beeinflusst von einigen wichtigen offenen Problemen in der Mathematik, die vorhersagen, dass die oben beschriebene Dichotomie für die Lösungsmengen vieler Arten von Gleichungen gilt. In diesem Sinne würde meine Forschung zusätzliche Beweise dafür liefern, dass die erwähnten offenen Fragen eine positive Antwort haben. Fragen wie die, welche meine Arbeit motivieren, stammen aus einem Bereich der Zahlentheorie, der als unlikely intersections bekannt ist. Dies ist ein wichtiger Bereich aktiver Forschung, und ich hoffe, durch die Kombination von Techniken aus verschiedenen Bereichen der Mathematik, wie Zahlentheorie, mathematischer Logik, und komplexer Analysis, zu unserem Verständnis dieser Fragen beitragen zu können.
- Universität Wien - 100%