• Skip to content (access key 1)
  • Skip to search (access key 7)
FWF — Austrian Science Fund
  • Go to overview page Discover

    • Research Radar
    • Discoveries
      • Emmanuelle Charpentier
      • Adrian Constantin
      • Monika Henzinger
      • Ferenc Krausz
      • Wolfgang Lutz
      • Walter Pohl
      • Christa Schleper
      • Anton Zeilinger
    • scilog Magazine
    • Austrian Science Awards
      • FWF Wittgenstein Awards
      • FWF START Awards
    • excellent=austria
      • Clusters of Excellence
      • Emerging Fields
    • In the Spotlight
      • 40 Years of Erwin Schrödinger Fellowships
      • Quantum Austria
    • Dialogs and Talks
      • think.beyond Summit
    • E-Book Library
  • Go to overview page Funding

    • Portfolio
      • excellent=austria
        • Clusters of Excellence
        • Emerging Fields
      • Projects
        • Principal Investigator Projects
        • Principal Investigator Projects International
        • Clinical Research
        • 1000 Ideas
        • Arts-Based Research
        • FWF Wittgenstein Award
      • Careers
        • ESPRIT
        • FWF ASTRA Awards
        • Erwin Schrödinger
        • Elise Richter
        • Elise Richter PEEK
        • doc.funds
        • doc.funds.connect
      • Collaborations
        • Specialized Research Groups
        • Special Research Areas
        • Research Groups
        • International – Multilateral Initiatives
        • #ConnectingMinds
      • Communication
        • Top Citizen Science
        • Science Communication
        • Book Publications
        • Digital Publications
        • Open-Access Block Grant
      • Subject-Specific Funding
        • AI Mission Austria
        • Belmont Forum
        • ERA-NET HERA
        • ERA-NET NORFACE
        • ERA-NET QuantERA
        • ERA-NET TRANSCAN
        • Alternative Methods to Animal Testing
        • European Partnership Biodiversa+
        • European Partnership ERA4Health
        • European Partnership ERDERA
        • European Partnership EUPAHW
        • European Partnership FutureFoodS
        • European Partnership OHAMR
        • European Partnership PerMed
        • European Partnership Water4All
        • Gottfried and Vera Weiss Award
        • netidee SCIENCE
        • Herzfelder Foundation Projects
        • Quantum Austria
        • Rückenwind Funding Bonus
        • WE&ME Award
        • Zero Emissions Award
      • International Collaborations
        • Belgium/Flanders
        • Germany
        • France
        • Italy/South Tyrol
        • Japan
        • Luxembourg
        • Poland
        • Switzerland
        • Slovenia
        • Taiwan
        • Tyrol–South Tyrol–Trentino
        • Czech Republic
        • Hungary
    • Step by Step
      • Find Funding
      • Submitting Your Application
      • International Peer Review
      • Funding Decisions
      • Carrying out Your Project
      • Closing Your Project
      • Further Information
        • Integrity and Ethics
        • Inclusion
        • Applying from Abroad
        • Personnel Costs
        • PROFI
        • Final Project Reports
        • Final Project Report Survey
    • FAQ
      • Project Phase PROFI
        • Accounting for Approved Funds
        • Labor and Social Law
        • Project Management
      • Project Phase Ad Personam
        • Accounting for Approved Funds
        • Labor and Social Law
        • Project Management
      • Expiring Programs
        • FWF START Awards
  • Go to overview page About Us

    • Mission Statement
    • FWF Video
    • Values
    • Facts and Figures
    • Annual Report
    • What We Do
      • Research Funding
        • Matching Funds Initiative
      • International Collaborations
      • Studies and Publications
      • Equal Opportunities and Diversity
        • Objectives and Principles
        • Measures
        • Creating Awareness of Bias in the Review Process
        • Terms and Definitions
        • Your Career in Cutting-Edge Research
      • Open Science
        • Open-Access Policy
          • Open-Access Policy for Peer-Reviewed Publications
          • Open-Access Policy for Peer-Reviewed Book Publications
          • Open-Access Policy for Research Data
        • Research Data Management
        • Citizen Science
        • Open Science Infrastructures
        • Open Science Funding
      • Evaluations and Quality Assurance
      • Academic Integrity
      • Science Communication
      • Philanthropy
      • Sustainability
    • History
    • Legal Basis
    • Organization
      • Executive Bodies
        • Executive Board
        • Supervisory Board
        • Assembly of Delegates
        • Scientific Board
        • Juries
      • FWF Office
    • Jobs at FWF
  • Go to overview page News

    • News
    • Press
      • Logos
    • Calendar
      • Post an Event
      • FWF Informational Events
    • Job Openings
      • Enter Job Opening
    • Newsletter
  • Discovering
    what
    matters.

    FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

    SOCIAL MEDIA

    • LinkedIn, external URL, opens in a new window
    • Twitter, external URL, opens in a new window
    • Facebook, external URL, opens in a new window
    • Instagram, external URL, opens in a new window
    • YouTube, external URL, opens in a new window

    SCILOG

    • Scilog — The science magazine of the Austrian Science Fund (FWF)
  • elane login, external URL, opens in a new window
  • Scilog external URL, opens in a new window
  • de Wechsle zu Deutsch

  

On the Stefan type problems

On the Stefan type problems

Naian Liao (ORCID: 0000-0003-2378-148X)
  • Grant DOI 10.55776/P36272
  • Funding program Principal Investigator Projects
  • Status ongoing
  • Start December 1, 2022
  • End November 30, 2026
  • Funding amount € 261,418

Disciplines

Mathematics (100%)

Keywords

    Stefan problem, Regularity, Intrinsic Scaling, P-Laplacian

Abstract

The melting ice in a cup of water presents a typical example of phase transition of a material. An intermediate state of the material naturally arises at the melting temperature. Some mathematical models regard it as a moving surface between the two phases, while others introduce a mushy regiona mixture of ice and water. The underlying physics consists of the heat diffusion in the two phases and the exchange of energy at the intermediate state. A material can also have several states, for instance, ice-water-vapor, and give arise to an example of multi-phase transition. In fact, at temperature 273.16 kelvins and a partial vapor pressure of 611.657 pascals, ice, water and vapor coexist in a stable equilibrium. Therefore, two interfaces can be observed. Another motivation stems from the petroleum geologythe saturation of two immiscible fluids in a porous medium. In nature, subsurface rocks were initially wet and the pores among them were saturated with water. It is important to understand how the oil in a reservoir eventually filled up these pores that were once occupied by the water. The displacement of the water by the oil is driven by the so-called capillary pressure that exists on the interface of the two immiscible fluids. The capillary pressure increases as the oil saturation increases, and meanwhile the water saturation is forced to decrease. Such a process continues until all water at the center of the pores is displaced, and the only water left is the layer adherent to the rock grains. In such a case, the remaining water becomes immobile, no matter how high the capillary pressure is exerted. This limiting saturation of water is called the connate water saturation. These natural phenomena abide by certain physical laws, which are described by partial differential equations under our study. Our central goal is to establish mathematical evidences supporting that the physical models are sufficiently complete descriptions within their framework. To establish this latter point is the real significance behind the mathematical effort expanded, though they are of intrinsic interest in their own right.

Research institution(s)
  • Universität Salzburg - 100%
Project participants
  • Verena Bögelein, Universität Salzburg , national collaboration partner
International project participants
  • Ugo Gianazza, Universita di Pavia - Italy
  • Vincenzo Vespri, Università degli Studi di Firenze - Italy
  • Igor Skrypnik, National Academy of Sciences of Ukraine - Ukraine

Research Output

  • 3 Citations
  • 3 Publications
Publications
  • 2025
    Title Regularity for the fractional p-Laplace equation
    DOI 10.1016/j.jfa.2025.111078
    Type Journal Article
    Author Bögelein V
    Journal Journal of Functional Analysis
    Pages 111078
    Link Publication
  • 2025
    Title Local boundedness and higher integrability for the sub-critical singular porous medium system
    DOI 10.1007/s00208-025-03160-3
    Type Journal Article
    Author Bögelein V
    Journal Mathematische Annalen
    Pages 1-85
    Link Publication
  • 2025
    Title Gradient estimates for the fractional p-Poisson equation
    DOI 10.1016/j.matpur.2025.103764
    Type Journal Article
    Author Bögelein V
    Journal Journal de Mathématiques Pures et Appliquées
    Pages 103764
    Link Publication

Discovering
what
matters.

Newsletter

FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

Contact

Austrian Science Fund (FWF)
Georg-Coch-Platz 2
(Entrance Wiesingerstraße 4)
1010 Vienna

office(at)fwf.ac.at
+43 1 505 67 40

General information

  • Job Openings
  • Jobs at FWF
  • Press
  • Philanthropy
  • scilog
  • FWF Office
  • Social Media Directory
  • LinkedIn, external URL, opens in a new window
  • Twitter, external URL, opens in a new window
  • Facebook, external URL, opens in a new window
  • Instagram, external URL, opens in a new window
  • YouTube, external URL, opens in a new window
  • Cookies
  • Whistleblowing/Complaints Management
  • Accessibility Statement
  • Data Protection
  • Acknowledgements
  • Social Media Directory
  • © Österreichischer Wissenschaftsfonds FWF
© Österreichischer Wissenschaftsfonds FWF