• Skip to content (access key 1)
  • Skip to search (access key 7)
FWF — Austrian Science Fund
  • Go to overview page Discover

    • Research Radar
      • Research Radar Archives 1974–1994
    • Discoveries
      • Emmanuelle Charpentier
      • Adrian Constantin
      • Monika Henzinger
      • Ferenc Krausz
      • Wolfgang Lutz
      • Walter Pohl
      • Christa Schleper
      • Elly Tanaka
      • Anton Zeilinger
    • Impact Stories
      • Verena Gassner
      • Wolfgang Lechner
      • Georg Winter
    • scilog Magazine
    • Austrian Science Awards
      • FWF Wittgenstein Awards
      • FWF ASTRA Awards
      • FWF START Awards
      • Award Ceremony
    • excellent=austria
      • Clusters of Excellence
      • Emerging Fields
    • In the Spotlight
      • 40 Years of Erwin Schrödinger Fellowships
      • Quantum Austria
    • Dialogs and Talks
      • think.beyond Summit
    • Knowledge Transfer Events
    • E-Book Library
  • Go to overview page Funding

    • Portfolio
      • excellent=austria
        • Clusters of Excellence
        • Emerging Fields
      • Projects
        • Principal Investigator Projects
        • Principal Investigator Projects International
        • Clinical Research
        • 1000 Ideas
        • Arts-Based Research
        • FWF Wittgenstein Award
      • Careers
        • ESPRIT
        • FWF ASTRA Awards
        • Erwin Schrödinger
        • doc.funds
        • doc.funds.connect
      • Collaborations
        • Specialized Research Groups
        • Special Research Areas
        • Research Groups
        • International – Multilateral Initiatives
        • #ConnectingMinds
      • Communication
        • Top Citizen Science
        • Science Communication
        • Book Publications
        • Digital Publications
        • Open-Access Block Grant
      • Subject-Specific Funding
        • AI Mission Austria
        • Belmont Forum
        • ERA-NET HERA
        • ERA-NET NORFACE
        • ERA-NET QuantERA
        • ERA-NET TRANSCAN
        • Alternative Methods to Animal Testing
        • European Partnership Biodiversa+
        • European Partnership BrainHealth
        • European Partnership ERA4Health
        • European Partnership ERDERA
        • European Partnership EUPAHW
        • European Partnership FutureFoodS
        • European Partnership OHAMR
        • European Partnership PerMed
        • European Partnership Water4All
        • Gottfried and Vera Weiss Award
        • netidee SCIENCE
        • Herzfelder Foundation Projects
        • Quantum Austria
        • Rückenwind Funding Bonus
        • WE&ME Award
        • Zero Emissions Award
      • International Collaborations
        • Belgium/Flanders
        • Germany
        • France
        • Italy/South Tyrol
        • Japan
        • Luxembourg
        • Poland
        • Switzerland
        • Slovenia
        • Taiwan
        • Tyrol–South Tyrol–Trentino
        • Czech Republic
        • Hungary
    • Step by Step
      • Find Funding
      • Submitting Your Application
      • International Peer Review
      • Funding Decisions
      • Carrying out Your Project
      • Closing Your Project
      • Further Information
        • Integrity and Ethics
        • Inclusion
        • Applying from Abroad
        • Personnel Costs
        • PROFI
        • Final Project Reports
        • Final Project Report Survey
    • FAQ
      • Project Phase PROFI
      • Project Phase Ad Personam
      • Expiring Programs
        • Elise Richter and Elise Richter PEEK
        • FWF START Awards
  • Go to overview page About Us

    • Mission Statement
    • FWF Video
    • Values
    • Facts and Figures
    • Annual Report
    • What We Do
      • Research Funding
        • Matching Funds Initiative
      • International Collaborations
      • Studies and Publications
      • Equal Opportunities and Diversity
        • Objectives and Principles
        • Measures
        • Creating Awareness of Bias in the Review Process
        • Terms and Definitions
        • Your Career in Cutting-Edge Research
      • Open Science
        • Open-Access Policy
          • Open-Access Policy for Peer-Reviewed Publications
          • Open-Access Policy for Peer-Reviewed Book Publications
          • Open-Access Policy for Research Data
        • Research Data Management
        • Citizen Science
        • Open Science Infrastructures
        • Open Science Funding
      • Evaluations and Quality Assurance
      • Academic Integrity
      • Science Communication
      • Philanthropy
      • Sustainability
    • History
    • Legal Basis
    • Organization
      • Executive Bodies
        • Executive Board
        • Supervisory Board
        • Assembly of Delegates
        • Scientific Board
        • Juries
      • FWF Office
    • Jobs at FWF
  • Go to overview page News

    • News
    • Press
      • Logos
    • Calendar
      • Post an Event
      • FWF Informational Events
    • Job Openings
      • Enter Job Opening
    • Newsletter
  • Discovering
    what
    matters.

    FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

    SOCIAL MEDIA

    • LinkedIn, external URL, opens in a new window
    • , external URL, opens in a new window
    • Facebook, external URL, opens in a new window
    • Instagram, external URL, opens in a new window
    • YouTube, external URL, opens in a new window

    SCILOG

    • Scilog — The science magazine of the Austrian Science Fund (FWF)
  • elane login, external URL, opens in a new window
  • Scilog external URL, opens in a new window
  • de Wechsle zu Deutsch

  

Regularization and Discretization of Inverse Problems for PDEs in Banach spaces

Regularization and Discretization of Inverse Problems for PDEs in Banach spaces

Barbara Kaltenbacher (ORCID: 0000-0002-3295-6977)
  • Grant DOI 10.55776/I2271
  • Funding program Principal Investigator Projects International
  • Status ended
  • Start March 1, 2016
  • End August 31, 2019
  • Funding amount € 122,661

DACH: Österreich - Deutschland - Schweiz

Disciplines

Mathematics (100%)

Keywords

    Inverse Problems, Parameter Identification, Regularization In Banach Spaces, Partial Differential Equations, Adaptive Discretization, Parameter Choice Strategies

Abstract Final report

The aim of this project is a combined analysis of regularization and discretization of ill-posed problems in Banach spaces specifically in the context of partial differential equations. Such problems play a crucial role in numerous applications ranging from medical imaging via nondestructive testing to geophysical prospecting, with the Banach space setting mandated by the inherent regularity of the sought coefficients as well as structural features such as sparsity. Our goal is to fill the gap between the existing abstract regularization theory in general Banach spaces and the adaptive discretization of well-posed optimization problems in Hilbert spaces with pointwise constraints to derive explicit source conditions and practical parameter choice rules and to develop adaptive discretization methods based on functional and goal-oriented error estimates that take into account the interdependence of regularization parameter, data noise level and discretization error. This will lead to an integrated approach for the stable and efficient numerical solution method of parameter identification problems in Banach spaces.

The aim of this project is a combined analysis of regularization and discretization of ill-posed problems in Banach spaces specifically in the context of partial differential equations. Such problems play a crucial role in numerous applications ranging from medical imaging via nondestructive testing to geophysical prospecting, with the Banach space setting mandated by the inherent regularity of the sought coefficients as well as structural features such as sparsity. Our goal is to fill the gap between the existing abstract regularization theory in general Banach spaces and the adaptive discretization of well-posed optimization problems in Hilbert spaces with pointwise constraints to derive explicit source conditions and practical parameter choice rules and to develop adaptive discretization methods based on functional and goal-oriented error estimates that take into account the interdependence of regularization parameter, data noise level and discretization error. This will lead to an integrated approach for the stable and efficient numerical solution method of parameter identification problems in Banach spaces.

Research institution(s)
  • Universität Klagenfurt - 100%
International project participants
  • Uno Hämarik, University of Tartu - Estonia
  • Martin Burger, Friedrich-Alexander-Universität Erlangen-Nürnberg - Germany
  • Daniel Wachsmuth, Julius-Maximilians-Universität Würzburg - Germany
  • Boris Vexler, Technische Universität München - Germany
  • Christian Clason, Universität Duisburg-Essen - Germany
  • Michael Hintermüller, Weierstraß-Institut für Angewandte Analysis und Stochastik - Germany

Research Output

  • 306 Citations
  • 29 Publications
Publications
  • 2020
    Title Regularization of inverse problems via box constrained minimization
    DOI 10.3934/ipi.2020021
    Type Journal Article
    Author Hungerländer P
    Journal Inverse Problems and Imaging
    Pages 437-461
    Link Publication
  • 2019
    Title The Ivanov regularized Gauss–Newton method in Banach space with an a posteriori choice of the regularization radius
    DOI 10.1515/jiip-2018-0093
    Type Journal Article
    Author Kaltenbacher B
    Journal Journal of Inverse and Ill-posed Problems
    Pages 539-557
    Link Publication
  • 2019
    Title On an inverse potential problem for a fractional reaction–diffusion equation
    DOI 10.1088/1361-6420/ab109e
    Type Journal Article
    Author Kaltenbacher B
    Journal Inverse Problems
    Pages 065004
    Link Publication
  • 2019
    Title Regularization of a backwards parabolic equation by fractional operators
    DOI 10.3934/ipi.2019020
    Type Journal Article
    Author Kaltenbacher B
    Journal Inverse Problems and Imaging
    Pages 401-430
    Link Publication
  • 2019
    Title On the identification of a nonlinear term in a reaction–diffusion equation
    DOI 10.1088/1361-6420/ab2aab
    Type Journal Article
    Author Kaltenbacher B
    Journal Inverse Problems
    Pages 115007
    Link Publication
  • 2019
    Title The Ivanov regularized Gauss-Newton method in Banach space with an a posteriori choice of the regularization radius
    DOI 10.48550/arxiv.1910.01811
    Type Preprint
    Author Kaltenbacher B
  • 2019
    Title Minimization based formulations of inverse problems and their regularization
    DOI 10.48550/arxiv.1910.01813
    Type Preprint
    Author Kaltenbacher B
  • 2019
    Title All-at-once versus reduced iterative methods for time dependent inverse problems
    DOI 10.48550/arxiv.1910.02857
    Type Preprint
    Author Kaltenbacher B
  • 2019
    Title Regularization of a backwards parabolic equation by fractional operators
    DOI 10.48550/arxiv.1910.02232
    Type Preprint
    Author Kaltenbacher B
  • 2019
    Title Recovery of multiple coefficients in a reaction-diffusion equation
    DOI 10.48550/arxiv.1905.12232
    Type Preprint
    Author Kaltenbacher B
  • 2019
    Title On the identification of a nonlinear term in a reaction-diffusion equation
    DOI 10.48550/arxiv.1905.12067
    Type Preprint
    Author Kaltenbacher B
  • 2016
    Title Functional error estimators for the adaptive discretization of inverse problems
    DOI 10.1088/0266-5611/32/10/104004
    Type Journal Article
    Author Clason C
    Journal Inverse Problems
    Pages 104004
    Link Publication
  • 2016
    Title The least error method for sparse solution reconstruction
    DOI 10.1088/0266-5611/32/9/094001
    Type Journal Article
    Author Bredies K
    Journal Inverse Problems
    Pages 094001
    Link Publication
  • 2016
    Title Integration based profile likelihood calculation for PDE constrained parameter estimation problems
    DOI 10.1088/0266-5611/32/12/125009
    Type Journal Article
    Author Boiger R
    Journal Inverse Problems
    Pages 125009
    Link Publication
  • 2016
    Title Regularization based on all-at-once formulations for inverse problems
    DOI 10.48550/arxiv.1603.05332
    Type Preprint
    Author Kaltenbacher B
  • 2016
    Title The least error method for sparse solution reconstruction
    DOI 10.48550/arxiv.1602.04429
    Type Preprint
    Author Bredies K
  • 2016
    Title Lavrentiev's regularization method in Hilbert spaces revisited
    DOI 10.3934/ipi.2016019
    Type Journal Article
    Author Hofmann B
    Journal Inverse Problems and Imaging
    Pages 741-764
    Link Publication
  • 2018
    Title Continuous analogue to iterative optimization for PDE-constrained inverse problems
    DOI 10.1080/17415977.2018.1494167
    Type Journal Article
    Author Boiger R
    Journal Inverse Problems in Science and Engineering
    Pages 710-734
    Link Publication
  • 2018
    Title On convergence and convergence rates for Ivanov and Morozov regularization and application to some parameter identification problems in elliptic PDEs
    DOI 10.1088/1361-6420/aab739
    Type Journal Article
    Author Kaltenbacher B
    Journal Inverse Problems
    Pages 055008
    Link Publication
  • 2018
    Title Minimization Based Formulations of Inverse Problems and Their Regularization
    DOI 10.1137/17m1124036
    Type Journal Article
    Author Kaltenbacher B
    Journal SIAM Journal on Optimization
    Pages 620-645
    Link Publication
  • 2017
    Title Convergence and adaptive discretization of the IRGNM Tikhonov and the IRGNM Ivanov method under a tangential cone condition in Banach space
    DOI 10.48550/arxiv.1707.07589
    Type Preprint
    Author Kaltenbacher B
  • 2016
    Title Identifying conductivity in electrical impedance tomography with total variation regularization
    DOI 10.48550/arxiv.1609.03714
    Type Preprint
    Author Hinze M
  • 2016
    Title Regularization Based on All-At-Once Formulations for Inverse Problems
    DOI 10.1137/16m1060984
    Type Journal Article
    Author Kaltenbacher B
    Journal SIAM Journal on Numerical Analysis
    Pages 2594-2618
    Link Publication
  • 2017
    Title Identifying conductivity in electrical impedance tomography with total variation regularization
    DOI 10.1007/s00211-017-0920-8
    Type Journal Article
    Author Hinze M
    Journal Numerische Mathematik
    Pages 723-765
  • 2017
    Title All-at-once versus reduced iterative methods for time dependent inverse problems
    DOI 10.1088/1361-6420/aa6f34
    Type Journal Article
    Author Kaltenbacher B
    Journal Inverse Problems
    Pages 064002
    Link Publication
  • 2018
    Title Convergence and adaptive discretization of the IRGNM Tikhonov and the IRGNM Ivanov method under a tangential cone condition in Banach space
    DOI 10.1007/s00211-018-0971-5
    Type Journal Article
    Author Kaltenbacher B
    Journal Numerische Mathematik
    Pages 449-478
    Link Publication
  • 2018
    Title On convergence and convergence rates for Ivanov and Morozov regularization and application to some parameter identification problems in elliptic PDEs
    DOI 10.48550/arxiv.1801.10181
    Type Preprint
    Author Kaltenbacher B
  • 2018
    Title Regularization of inverse problems via box constrained minimization
    DOI 10.48550/arxiv.1807.11316
    Type Preprint
    Author Hungerländer P
  • 2020
    Title Recovery of multiple coefficients in a reaction-diffusion equation
    DOI 10.1016/j.jmaa.2019.123475
    Type Journal Article
    Author Kaltenbacher B
    Journal Journal of Mathematical Analysis and Applications
    Pages 123475
    Link Publication

Discovering
what
matters.

Newsletter

FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

Contact

Austrian Science Fund (FWF)
Georg-Coch-Platz 2
(Entrance Wiesingerstraße 4)
1010 Vienna

office(at)fwf.ac.at
+43 1 505 67 40

General information

  • Job Openings
  • Jobs at FWF
  • Press
  • Philanthropy
  • scilog
  • FWF Office
  • Social Media Directory
  • LinkedIn, external URL, opens in a new window
  • , external URL, opens in a new window
  • Facebook, external URL, opens in a new window
  • Instagram, external URL, opens in a new window
  • YouTube, external URL, opens in a new window
  • Cookies
  • Whistleblowing/Complaints Management
  • Accessibility Statement
  • Data Protection
  • Acknowledgements
  • IFG-Form
  • Social Media Directory
  • © Österreichischer Wissenschaftsfonds FWF
© Österreichischer Wissenschaftsfonds FWF