• Skip to content (access key 1)
  • Skip to search (access key 7)
FWF — Austrian Science Fund
  • Go to overview page Discover

    • Research Radar
      • Research Radar Archives 1974–1994
    • Discoveries
      • Emmanuelle Charpentier
      • Adrian Constantin
      • Monika Henzinger
      • Ferenc Krausz
      • Wolfgang Lutz
      • Walter Pohl
      • Christa Schleper
      • Elly Tanaka
      • Anton Zeilinger
    • Impact Stories
      • Verena Gassner
      • Wolfgang Lechner
      • Georg Winter
    • scilog Magazine
    • Austrian Science Awards
      • FWF Wittgenstein Awards
      • FWF ASTRA Awards
      • FWF START Awards
      • Award Ceremony
    • excellent=austria
      • Clusters of Excellence
      • Emerging Fields
    • In the Spotlight
      • 40 Years of Erwin Schrödinger Fellowships
      • Quantum Austria
    • Dialogs and Talks
      • think.beyond Summit
    • Knowledge Transfer Events
    • E-Book Library
  • Go to overview page Funding

    • Portfolio
      • excellent=austria
        • Clusters of Excellence
        • Emerging Fields
      • Projects
        • Principal Investigator Projects
        • Principal Investigator Projects International
        • Clinical Research
        • 1000 Ideas
        • Arts-Based Research
        • FWF Wittgenstein Award
      • Careers
        • ESPRIT
        • FWF ASTRA Awards
        • Erwin Schrödinger
        • doc.funds
        • doc.funds.connect
      • Collaborations
        • Specialized Research Groups
        • Special Research Areas
        • Research Groups
        • International – Multilateral Initiatives
        • #ConnectingMinds
      • Communication
        • Top Citizen Science
        • Science Communication
        • Book Publications
        • Digital Publications
        • Open-Access Block Grant
      • Subject-Specific Funding
        • AI Mission Austria
        • Belmont Forum
        • ERA-NET HERA
        • ERA-NET NORFACE
        • ERA-NET QuantERA
        • ERA-NET TRANSCAN
        • Alternative Methods to Animal Testing
        • European Partnership Biodiversa+
        • European Partnership BrainHealth
        • European Partnership ERA4Health
        • European Partnership ERDERA
        • European Partnership EUPAHW
        • European Partnership FutureFoodS
        • European Partnership OHAMR
        • European Partnership PerMed
        • European Partnership Water4All
        • Gottfried and Vera Weiss Award
        • netidee SCIENCE
        • Herzfelder Foundation Projects
        • Quantum Austria
        • Rückenwind Funding Bonus
        • WE&ME Award
        • Zero Emissions Award
      • International Collaborations
        • Belgium/Flanders
        • Germany
        • France
        • Italy/South Tyrol
        • Japan
        • Luxembourg
        • Poland
        • Switzerland
        • Slovenia
        • Taiwan
        • Tyrol–South Tyrol–Trentino
        • Czech Republic
        • Hungary
    • Step by Step
      • Find Funding
      • Submitting Your Application
      • International Peer Review
      • Funding Decisions
      • Carrying out Your Project
      • Closing Your Project
      • Further Information
        • Integrity and Ethics
        • Inclusion
        • Applying from Abroad
        • Personnel Costs
        • PROFI
        • Final Project Reports
        • Final Project Report Survey
    • FAQ
      • Project Phase PROFI
      • Project Phase Ad Personam
      • Expiring Programs
        • Elise Richter and Elise Richter PEEK
        • FWF START Awards
  • Go to overview page About Us

    • Mission Statement
    • FWF Video
    • Values
    • Facts and Figures
    • Annual Report
    • What We Do
      • Research Funding
        • Matching Funds Initiative
      • International Collaborations
      • Studies and Publications
      • Equal Opportunities and Diversity
        • Objectives and Principles
        • Measures
        • Creating Awareness of Bias in the Review Process
        • Terms and Definitions
        • Your Career in Cutting-Edge Research
      • Open Science
        • Open-Access Policy
          • Open-Access Policy for Peer-Reviewed Publications
          • Open-Access Policy for Peer-Reviewed Book Publications
          • Open-Access Policy for Research Data
        • Research Data Management
        • Citizen Science
        • Open Science Infrastructures
        • Open Science Funding
      • Evaluations and Quality Assurance
      • Academic Integrity
      • Science Communication
      • Philanthropy
      • Sustainability
    • History
    • Legal Basis
    • Organization
      • Executive Bodies
        • Executive Board
        • Supervisory Board
        • Assembly of Delegates
        • Scientific Board
        • Juries
      • FWF Office
    • Jobs at FWF
  • Go to overview page News

    • News
    • Press
      • Logos
    • Calendar
      • Post an Event
      • FWF Informational Events
    • Job Openings
      • Enter Job Opening
    • Newsletter
  • Discovering
    what
    matters.

    FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

    SOCIAL MEDIA

    • LinkedIn, external URL, opens in a new window
    • , external URL, opens in a new window
    • Facebook, external URL, opens in a new window
    • Instagram, external URL, opens in a new window
    • YouTube, external URL, opens in a new window

    SCILOG

    • Scilog — The science magazine of the Austrian Science Fund (FWF)
  • elane login, external URL, opens in a new window
  • Scilog external URL, opens in a new window
  • de Wechsle zu Deutsch

  

Quantum Dynamics of Strongly Correlated RbCs Dipolar Quantum Gases

Quantum Dynamics of Strongly Correlated RbCs Dipolar Quantum Gases

Hanns-Christoph Nägerl (ORCID: 0000-0002-7789-4431)
  • Grant DOI 10.55776/I2789
  • Funding program Principal Investigator Projects International
  • Status ended
  • Start November 1, 2016
  • End October 31, 2019
  • Funding amount € 327,537
  • Project website

DACH: Österreich - Deutschland - Schweiz

Disciplines

Physics, Astronomy (100%)

Keywords

    Dipolar Quantum Gases, Ultracold Molecules, Quantum Many-Body Dynamics, Quantum Simulation, Quantum State Control, Bose-Einstein condensation

Abstract Final report

Ultracold atoms and molecules confined to lattice potentials offer myriad possibilities for the controlled preparation and study of strongly correlated quantum many-body systems. For atoms, milestones in the field have been the experimental realization of the Hubbard model of condensed matter physics and the observation of the superfluid-to-Mott insulator phase transition for systems with local contact interactions. Molecules have the potential to greatly increase the spectrum of strongly correlated quantum systems that can be investigated. In particular, dipolar molecules with their long-range and orientation dependent electric dipole-dipole interaction provide new opportunities to probe e.g. novel forms of superfluidity and interesting many-body ground states (such as dipolar crystals, supersolids, fractional Mott insulators, quantum magnets,) in conjunction with novel quantum phase transitions, and in general non-equilibrium quantum many-body dynamics. This project is aimed at studying the dynamics of ultracold RbCs dipolar bosons confined to one- and two-dimensional geometry and lattice potentials. The RbCs dipoles, initially prepared from atom pairs located at individual sites of an optical lattice at high filling fraction, will be studied in the regimes of frozen spins (i.e. fixed spatial location in the lattice) and in the regime of mobile dipoles. We will explore to what extent one can realize novel many-body spin models, with possible applications to the field of quantum simulation, and study the stability, dynamics and relaxation processes for many-body systems composed of quantum dipoles confined to low-dimensional geometry. In particular, our project aims at testing in experiments the dynamical processes as allowed by the extended Hubbard model, i.e. the Hubbard model augmented by terms modeling off-site interaction terms. The project is based on an existing Rb-Cs quantum gas mixture apparatus (presently funded as a SFB project) for which we have implemented efficient ground-state transfer of ultracold RbCs molecules into a specific hyperfine sublevel of the RbCs ground-state molecule.

The field of ultracold quantum gases has seen a spectacular development over the course of the past 25 years. A highlight was the first formation of a Bose-Einstein condensate (BEC) with ultracold atoms in 1995, a feat that was acknowledged by the Nobel Prize to Cornell, Ketterle, and Wieman in 2001 and that has led to many spectacular research results since then. When confined to periodic lattice potentials, ultracold atoms and molecules offer myriad possibilities for the controlled preparation and study of strongly correlated quantum many-body systems. For atoms, milestones in the field have been the experimental realization of the Hubbard model of condensed matter physics and the observation of the superfluid-to-Mott insulator phase transition for systems with local contact interactions. Molecules have the potential to greatly increase the spectrum of strongly correlated quantum systems that can be investigated. In particular, dipolar molecules with their long-range and orientation dependent electric dipole-dipole interaction provide new opportunities to probe e.g. novel forms of superfluidity and interesting many-body ground states (such as dipolar crystals, supersolids, fractional Mott insulators, quantum magnets,) in conjunction with novel quantum phase transitions, and in general non-equilibrium quantum many-body dynamics. This project is aimed at studying the dynamics of ultracold RbCs dipolar bosons confined to one- (1D) and two-dimensional (2D) geometry and lattice potentials. The RbCs dipoles, initially prepared from atom pairs located at individual sites of an optical lattice at high filling fraction, will be studied in the regimes of frozen spins (i.e. fixed spatial location in the lattice) and in the regime of mobile dipoles. An open question is whether it will be possible to put ground-state molecules into the state of a BEC. For preparing the molecules in the regime of quantum degeneracy, an elaborate preparation procedure is needed. In the past years, we have dedicated most of our time to improving this procedure and to understand in detail some of the relevant processes. For example, we have, for the first time, detected confinement-induced resonances in 0D confinement. These resonances appear when the length scales of confinement and of scattering start to compete, and these have previously been only seen in 1D and 2 D confinement. We have investigated into the phenomenon of superfluid transport. When we transport atoms across 200 lattice sites of an optical lattice, it is crucial not to break the superfluid speed limit. In fact, samples that are not superfluid are not transported at all. In addition, we have completely rebuilt our laser system needed for laser cooling in order to simplify the setup, thereby reducing the number of laser from about 20 to 12.

Research institution(s)
  • Universität Innsbruck - 100%
International project participants
  • Silke Ospelkaus-Schwarzer, Leibniz Universität Hannover - Germany
  • Christoph Gohle, Max-Planck-Gesellschaft - Germany
  • Immanuel Bloch, Max-Planck-Institut für Quantenoptik - Germany
  • Eva Kuhnle, Ruprecht-Karls-Universität Heidelberg - Germany
  • Matthias Weidemüller, Ruprecht-Karls-Universität Heidelberg - Germany
  • Allessandro Zenesini, Universität Hannover - Germany
  • Luis Santos, Universität Hannover - Germany
  • Hans Peter Büchler, Universität Stuttgart - Germany
  • Tilman Pfau, Universität Stuttgart - Germany

Research Output

  • 1 Scientific Awards
  • 3 Fundings
Scientific Awards
  • 2017
    Title Wittgenstein Prize 2017
    Type Research prize
    Level of Recognition National (any country)
Fundings
  • 2019
    Title Quantum dynamics of strongly correlated RbCs dipolar gases
    Type Other
    Start of Funding 2019
    Funder Austrian Science Fund (FWF)
  • 2019
    Title ERC Advanced Grant
    Type Research grant (including intramural programme)
    Start of Funding 2019
    Funder European Research Council (ERC)
  • 2018
    Title Wittgenstein
    Type Research grant (including intramural programme)
    Start of Funding 2018
    Funder Austrian Science Fund (FWF)

Discovering
what
matters.

Newsletter

FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

Contact

Austrian Science Fund (FWF)
Georg-Coch-Platz 2
(Entrance Wiesingerstraße 4)
1010 Vienna

office(at)fwf.ac.at
+43 1 505 67 40

General information

  • Job Openings
  • Jobs at FWF
  • Press
  • Philanthropy
  • scilog
  • FWF Office
  • Social Media Directory
  • LinkedIn, external URL, opens in a new window
  • , external URL, opens in a new window
  • Facebook, external URL, opens in a new window
  • Instagram, external URL, opens in a new window
  • YouTube, external URL, opens in a new window
  • Cookies
  • Whistleblowing/Complaints Management
  • Accessibility Statement
  • Data Protection
  • Acknowledgements
  • IFG-Form
  • Social Media Directory
  • © Österreichischer Wissenschaftsfonds FWF
© Österreichischer Wissenschaftsfonds FWF