• Skip to content (access key 1)
  • Skip to search (access key 7)
FWF — Austrian Science Fund
  • Go to overview page Discover

    • Research Radar
      • Research Radar Archives 1974–1994
    • Discoveries
      • Emmanuelle Charpentier
      • Adrian Constantin
      • Monika Henzinger
      • Ferenc Krausz
      • Wolfgang Lutz
      • Walter Pohl
      • Christa Schleper
      • Elly Tanaka
      • Anton Zeilinger
    • Impact Stories
      • Verena Gassner
      • Wolfgang Lechner
      • Georg Winter
    • scilog Magazine
    • Austrian Science Awards
      • FWF Wittgenstein Awards
      • FWF ASTRA Awards
      • FWF START Awards
      • Award Ceremony
    • excellent=austria
      • Clusters of Excellence
      • Emerging Fields
    • In the Spotlight
      • 40 Years of Erwin Schrödinger Fellowships
      • Quantum Austria
    • Dialogs and Talks
      • think.beyond Summit
    • Knowledge Transfer Events
    • E-Book Library
  • Go to overview page Funding

    • Portfolio
      • excellent=austria
        • Clusters of Excellence
        • Emerging Fields
      • Projects
        • Principal Investigator Projects
        • Principal Investigator Projects International
        • Clinical Research
        • 1000 Ideas
        • Arts-Based Research
        • FWF Wittgenstein Award
      • Careers
        • ESPRIT
        • FWF ASTRA Awards
        • Erwin Schrödinger
        • doc.funds
        • doc.funds.connect
      • Collaborations
        • Specialized Research Groups
        • Special Research Areas
        • Research Groups
        • International – Multilateral Initiatives
        • #ConnectingMinds
      • Communication
        • Top Citizen Science
        • Science Communication
        • Book Publications
        • Digital Publications
        • Open-Access Block Grant
      • Subject-Specific Funding
        • AI Mission Austria
        • Belmont Forum
        • ERA-NET HERA
        • ERA-NET NORFACE
        • ERA-NET QuantERA
        • ERA-NET TRANSCAN
        • Alternative Methods to Animal Testing
        • European Partnership Biodiversa+
        • European Partnership BrainHealth
        • European Partnership ERA4Health
        • European Partnership ERDERA
        • European Partnership EUPAHW
        • European Partnership FutureFoodS
        • European Partnership OHAMR
        • European Partnership PerMed
        • European Partnership Water4All
        • Gottfried and Vera Weiss Award
        • netidee SCIENCE
        • Herzfelder Foundation Projects
        • Quantum Austria
        • Rückenwind Funding Bonus
        • WE&ME Award
        • Zero Emissions Award
      • International Collaborations
        • Belgium/Flanders
        • Germany
        • France
        • Italy/South Tyrol
        • Japan
        • Luxembourg
        • Poland
        • Switzerland
        • Slovenia
        • Taiwan
        • Tyrol–South Tyrol–Trentino
        • Czech Republic
        • Hungary
    • Step by Step
      • Find Funding
      • Submitting Your Application
      • International Peer Review
      • Funding Decisions
      • Carrying out Your Project
      • Closing Your Project
      • Further Information
        • Integrity and Ethics
        • Inclusion
        • Applying from Abroad
        • Personnel Costs
        • PROFI
        • Final Project Reports
        • Final Project Report Survey
    • FAQ
      • Project Phase PROFI
      • Project Phase Ad Personam
      • Expiring Programs
        • Elise Richter and Elise Richter PEEK
        • FWF START Awards
  • Go to overview page About Us

    • Mission Statement
    • FWF Video
    • Values
    • Facts and Figures
    • Annual Report
    • What We Do
      • Research Funding
        • Matching Funds Initiative
      • International Collaborations
      • Studies and Publications
      • Equal Opportunities and Diversity
        • Objectives and Principles
        • Measures
        • Creating Awareness of Bias in the Review Process
        • Terms and Definitions
        • Your Career in Cutting-Edge Research
      • Open Science
        • Open-Access Policy
          • Open-Access Policy for Peer-Reviewed Publications
          • Open-Access Policy for Peer-Reviewed Book Publications
          • Open-Access Policy for Research Data
        • Research Data Management
        • Citizen Science
        • Open Science Infrastructures
        • Open Science Funding
      • Evaluations and Quality Assurance
      • Academic Integrity
      • Science Communication
      • Philanthropy
      • Sustainability
    • History
    • Legal Basis
    • Organization
      • Executive Bodies
        • Executive Board
        • Supervisory Board
        • Assembly of Delegates
        • Scientific Board
        • Juries
      • FWF Office
    • Jobs at FWF
  • Go to overview page News

    • News
    • Press
      • Logos
    • Calendar
      • Post an Event
      • FWF Informational Events
    • Job Openings
      • Enter Job Opening
    • Newsletter
  • Discovering
    what
    matters.

    FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

    SOCIAL MEDIA

    • LinkedIn, external URL, opens in a new window
    • , external URL, opens in a new window
    • Facebook, external URL, opens in a new window
    • Instagram, external URL, opens in a new window
    • YouTube, external URL, opens in a new window

    SCILOG

    • Scilog — The science magazine of the Austrian Science Fund (FWF)
  • elane login, external URL, opens in a new window
  • Scilog external URL, opens in a new window
  • de Wechsle zu Deutsch

  

Wong Zakai type approximations of SDEs and SPEDEs with jump noise

Wong Zakai type approximations of SDEs and SPEDEs with jump noise

Erika Hausenblas (ORCID: 0000-0002-1762-9521)
  • Grant DOI 10.55776/I2884
  • Funding program Principal Investigator Projects International
  • Status ended
  • Start July 1, 2016
  • End April 30, 2020
  • Funding amount € 56,574
  • Project website

DACH: Österreich - Deutschland - Schweiz

Disciplines

Mathematics (100%)

Keywords

    Wonk Zakai Approximation, Stochastic Differential Equation, Levy Noise, Stochastic Partial Differential Equations, Canonical expression, Numerical Methods

Abstract Final report

Stochastic ordinary or partial differential equations driven by a Brownian motion or Lévy processes are indispensable for the modelling of various real world phenomena. However their solutions are already by construction just convenient mathematical idealizations of real processes. About 50 years ago, Wong and Zakai suggested to treat stochastic differential equations as limits of the ordinary random equations driven by path-wise regular (e.g. smooth) approximations of the noise process. In this approach, Brownian motions can be seen as idealization of short range chaotic motions (diffusion), whereas jumps appear as idealizations of very fast continuous long range anomalous transitions. It is known in case of stochastic differential equations, that the limiting process solves the Stratonovich equation in the Brownian case, and the canonical (Marcus) equation in the general case with jump noise. Motivated by examples form physics, hydrology and engineering, we are going to underpin the Wong--Zakai type approximations for stochastic ordinary and partial differential equations driven by Lévy noise. The main emphasis will be made on the convergence of the regular approximations to a discontinuous limit in the non-standard Skorokhod topology and to the identification of proper correction terms in the limiting stochastic equation. One focus of the project will be set on the advection-diffusion equations in the whole space with Lévy noise acting on the transport term, which can be related to the turbulent diffusivity. For advection-diffusion equations on bounded domains, Lévy noise on the boundary will mimic an instantaneous release of a contaminant into a ground water. Finally, we explore the numerical methods of solving SPDEs with the help of deterministic solvers applied to the Wong-Zakai approximations. The results obtained in the project, besides their mathematical value, should contribute to a deeper understanding of the Lévy driven dynamics and numerics in physics and applied sciences.

Eines der aktuellsten Forschungsgebiete in der stochastischen Analysis sind stochastische partielle Differentialgleichungen. Dies betrifft sowohl die Theorie als auch die Anwendungen. Hier betrachtet man systeme die normalerweise mittels partiellen Differentialgleichungen beschrieben werden wo man neben den deterministischen Einflüssen zusätzlich einen stochastischen Störfaktoren (Rauschen) betrachtet. Beispielsweise konnen durch stochastische partielle Differentialgleichungen Prozesse in der Populationsgenetik, die Ausbreitung von Epidemien, die Ausbreitung von Schadstoffen in der Atmosphaere, zufaeallige Schwingungen und vieles anderes modelliert werden. Um aber diese zu modellieren, muss man den zufaelligen Stoerterm auch approximieren. In diesen Projekt haben wir eine bestimmte Art den Stoerterm zu approximieren untersucht und untersucht mit welcher Gleichung der Prozess beschrieben werden kann, falls man die Approximation verfeinert und die Approximation konvergiert.

Research institution(s)
  • Montanuniversität Leoben - 100%
International project participants
  • Ilya Pavlyukevich, Friedrich Schiller Universität Jena - Germany

Research Output

  • 17 Citations
  • 6 Publications
Publications
  • 2018
    Title Implicit Euler method for numerical solution of nonlinear stochastic partial differential equations with multiplicative trace class noise
    DOI 10.1002/mma.4946
    Type Journal Article
    Author Kamrani M
    Journal Mathematical Methods in the Applied Sciences
    Pages 4986-5002
  • 2021
    Title Wong–Zakai Approximation for Landau–Lifshitz–Gilbert Equation Driven by Geometric Rough Paths
    DOI 10.1007/s00245-021-09808-1
    Type Journal Article
    Author Fahim K
    Journal Applied Mathematics & Optimization
    Pages 1685-1730
    Link Publication
  • 2019
    Title A Carleman estimate for the fractional heat equation and its application in final state observability
    DOI 10.48550/arxiv.1911.05362
    Type Preprint
    Author Hausenblas E
  • 2020
    Title Theoretical study and numerical simulation of pattern formation in the deterministic and stochastic Gray–Scott equations
    DOI 10.1016/j.cam.2019.06.051
    Type Journal Article
    Author Hausenblas E
    Journal Journal of Computational and Applied Mathematics
    Pages 112335
    Link Publication
  • 2021
    Title The Wong--Zakai approximation for Landau--Lifshitz--Gilbert equation driven by geometric rough paths
    Type Journal Article
    Author Mukherjee
    Journal Applied Mathematics & Optimization
    Pages 14320606
    Link Publication
  • 0
    Title Global solutions to the stochastic Volterra Equation perturbed by a rough path
    Type Other
    Author Fahim Kistosil

Discovering
what
matters.

Newsletter

FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

Contact

Austrian Science Fund (FWF)
Georg-Coch-Platz 2
(Entrance Wiesingerstraße 4)
1010 Vienna

office(at)fwf.ac.at
+43 1 505 67 40

General information

  • Job Openings
  • Jobs at FWF
  • Press
  • Philanthropy
  • scilog
  • FWF Office
  • Social Media Directory
  • LinkedIn, external URL, opens in a new window
  • , external URL, opens in a new window
  • Facebook, external URL, opens in a new window
  • Instagram, external URL, opens in a new window
  • YouTube, external URL, opens in a new window
  • Cookies
  • Whistleblowing/Complaints Management
  • Accessibility Statement
  • Data Protection
  • Acknowledgements
  • IFG-Form
  • Social Media Directory
  • © Österreichischer Wissenschaftsfonds FWF
© Österreichischer Wissenschaftsfonds FWF