• Skip to content (access key 1)
  • Skip to search (access key 7)
FWF — Austrian Science Fund
  • Go to overview page Discover

    • Research Radar
      • Research Radar Archives 1974–1994
    • Discoveries
      • Emmanuelle Charpentier
      • Adrian Constantin
      • Monika Henzinger
      • Ferenc Krausz
      • Wolfgang Lutz
      • Walter Pohl
      • Christa Schleper
      • Elly Tanaka
      • Anton Zeilinger
    • Impact Stories
      • Verena Gassner
      • Wolfgang Lechner
      • Georg Winter
    • scilog Magazine
    • Austrian Science Awards
      • FWF Wittgenstein Awards
      • FWF ASTRA Awards
      • FWF START Awards
      • Award Ceremony
    • excellent=austria
      • Clusters of Excellence
      • Emerging Fields
    • In the Spotlight
      • 40 Years of Erwin Schrödinger Fellowships
      • Quantum Austria
    • Dialogs and Talks
      • think.beyond Summit
    • Knowledge Transfer Events
    • E-Book Library
  • Go to overview page Funding

    • Portfolio
      • excellent=austria
        • Clusters of Excellence
        • Emerging Fields
      • Projects
        • Principal Investigator Projects
        • Principal Investigator Projects International
        • Clinical Research
        • 1000 Ideas
        • Arts-Based Research
        • FWF Wittgenstein Award
      • Careers
        • ESPRIT
        • FWF ASTRA Awards
        • Erwin Schrödinger
        • doc.funds
        • doc.funds.connect
      • Collaborations
        • Specialized Research Groups
        • Special Research Areas
        • Research Groups
        • International – Multilateral Initiatives
        • #ConnectingMinds
      • Communication
        • Top Citizen Science
        • Science Communication
        • Book Publications
        • Digital Publications
        • Open-Access Block Grant
      • Subject-Specific Funding
        • AI Mission Austria
        • Belmont Forum
        • ERA-NET HERA
        • ERA-NET NORFACE
        • ERA-NET QuantERA
        • ERA-NET TRANSCAN
        • Alternative Methods to Animal Testing
        • European Partnership Biodiversa+
        • European Partnership BrainHealth
        • European Partnership ERA4Health
        • European Partnership ERDERA
        • European Partnership EUPAHW
        • European Partnership FutureFoodS
        • European Partnership OHAMR
        • European Partnership PerMed
        • European Partnership Water4All
        • Gottfried and Vera Weiss Award
        • netidee SCIENCE
        • Herzfelder Foundation Projects
        • Quantum Austria
        • Rückenwind Funding Bonus
        • WE&ME Award
        • Zero Emissions Award
      • International Collaborations
        • Belgium/Flanders
        • Germany
        • France
        • Italy/South Tyrol
        • Japan
        • Luxembourg
        • Poland
        • Switzerland
        • Slovenia
        • Taiwan
        • Tyrol–South Tyrol–Trentino
        • Czech Republic
        • Hungary
    • Step by Step
      • Find Funding
      • Submitting Your Application
      • International Peer Review
      • Funding Decisions
      • Carrying out Your Project
      • Closing Your Project
      • Further Information
        • Integrity and Ethics
        • Inclusion
        • Applying from Abroad
        • Personnel Costs
        • PROFI
        • Final Project Reports
        • Final Project Report Survey
    • FAQ
      • Project Phase PROFI
      • Project Phase Ad Personam
      • Expiring Programs
        • Elise Richter and Elise Richter PEEK
        • FWF START Awards
  • Go to overview page About Us

    • Mission Statement
    • FWF Video
    • Values
    • Facts and Figures
    • Annual Report
    • What We Do
      • Research Funding
        • Matching Funds Initiative
      • International Collaborations
      • Studies and Publications
      • Equal Opportunities and Diversity
        • Objectives and Principles
        • Measures
        • Creating Awareness of Bias in the Review Process
        • Terms and Definitions
        • Your Career in Cutting-Edge Research
      • Open Science
        • Open-Access Policy
          • Open-Access Policy for Peer-Reviewed Publications
          • Open-Access Policy for Peer-Reviewed Book Publications
          • Open-Access Policy for Research Data
        • Research Data Management
        • Citizen Science
        • Open Science Infrastructures
        • Open Science Funding
      • Evaluations and Quality Assurance
      • Academic Integrity
      • Science Communication
      • Philanthropy
      • Sustainability
    • History
    • Legal Basis
    • Organization
      • Executive Bodies
        • Executive Board
        • Supervisory Board
        • Assembly of Delegates
        • Scientific Board
        • Juries
      • FWF Office
    • Jobs at FWF
  • Go to overview page News

    • News
    • Press
      • Logos
    • Calendar
      • Post an Event
      • FWF Informational Events
    • Job Openings
      • Enter Job Opening
    • Newsletter
  • Discovering
    what
    matters.

    FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

    SOCIAL MEDIA

    • LinkedIn, external URL, opens in a new window
    • , external URL, opens in a new window
    • Facebook, external URL, opens in a new window
    • Instagram, external URL, opens in a new window
    • YouTube, external URL, opens in a new window

    SCILOG

    • Scilog — The science magazine of the Austrian Science Fund (FWF)
  • elane login, external URL, opens in a new window
  • Scilog external URL, opens in a new window
  • de Wechsle zu Deutsch

  

Interfaces and Mass Transfer at Elevated Pressure

Interfaces and Mass Transfer at Elevated Pressure

Tim Zeiner (ORCID: 0000-0001-7298-4828)
  • Grant DOI 10.55776/I5347
  • Funding program Principal Investigator Projects International
  • Status ended
  • Start October 1, 2021
  • End September 30, 2025
  • Funding amount € 253,922

DACH: Österreich - Deutschland - Schweiz

Disciplines

Chemical Process Engineering (50%); Mechanical Engineering (50%)

Keywords

    Dichte Gradienten Theorie, PC-SAFT, Quaternäre Systeme, Optische Methoden, Dampf-Flüssig-Flüssig Systeme

Abstract Final report

In the context of the energy transition, processes related to storage and utilization of CO2 and H2 as well as fluid mixtures containing natural gas are gaining relevance. These processes take place at elevated pressure for which determining the respective phase equilibria as well as system properties like the interfacial tension and mass transfer is challenging. Therefore, it is advisable to apply physically based theoretical models that allow systematic calculation of material properties in a wide range of parameters making use of a relatively small number of experimental data. The starting point is a theoretical model, recently, established for mass transfer in liquid-liquid systems that will be further developed for calculating the mass transfer across vapor-liquid-liquid boundaries. As model systems, water n-dodecane n-butanol CH4 as well as water n-dodecane n-butanol CO2 are selected, representing systems that are of high scientific interest since from literature it is known that two of the transferring compounds, n-butanol and CO2, are enriched at the interface. For the first time, two quaternary systems will be investigated systematically in this project, i.e. all relevant thermodynamic properties will be determined, also of all binary and ternary subsystems. Further, new experimental procedures will be employed to systematically investigate the mass transfer that include the implementation of results from the thermodynamic modelling that on its turn will deliver a thermodynamically consistent approach based on PC-SAFT. PC-SAFT has already be applied successfully in literature for describing high pressure phase equilibria. In combination with the density gradient theory, interfacial properties can be calculated. From an expression of the Helmholtz energy of an inhomogeneous system, the chemical potential can be derived that on its turn is the driving force of mass transfer. The thermodynamic as well as mass transfer model are parametrized with help of the binary subsystems and validated with help of the ternary and quaternary systems. Properties that are not experimentally accessible like the local non-equilibrium density can be determined and used for the experimental evaluation of transient drop profiles in terms of the dynamic interfacial tension. In case of a successful project, a thermodynamically consistent model is provided for determining the mass transfer in multiphase systems at elevated pressures. Further, the data base on fluid mixture properties is extended and new experimental methods are provided.

Liquid fuels, water and gases such as natural gas, carbon dioxide and hydrogen come together in many energy supply processes: in pipelines, tanks, underground storage facilities and in the recovery of crude oil and natural gas. It is precisely where two fluids meet - at the so-called interface - that determines how quickly substances migrate and whether a process works safely and efficiently. Until now, these processes have been understood primarily at normal pressure, but hardly at the significantly higher pressures that are common in practice. This project therefore investigated systems consisting of water, a typical oil component, an alcohol (n-butanol) and the gases methane or carbon dioxide at high pressures. In special high-pressure cells, cameras and sensitive scales were used to observe how droplets grow or shrink when gas enters or exits. Laser light (Raman spectroscopy) was used to measure, without contact, how the concentrations of the substances inside the liquids change over time. At the same time, a detailed computer model was developed that replicates and extrapolates the measured data. The aim is to describe how composition, density and interfacial properties (interfacial tension) influence each other and how they control the exchange of substances. Even complex mixtures containing several liquids and gases can be virtually simulated in this way, without having to test every possible combination in the laboratory.

Research institution(s)
  • Karlsruher Institut für Technologie - 100%
International project participants
  • Philip Jaeger, Technische Universität Clausthal - Germany

Research Output

  • 12 Citations
  • 3 Publications
Publications
  • 2025
    Title Aqueous-organic and aqueous-vapor interfacial phenomena for three phase systems containing CO2, CH4, n-butanol, n-dodecane and H2O at saturation conditions
    DOI 10.1016/j.supflu.2024.106420
    Type Journal Article
    Author Villablanca-Ahues R
    Journal The Journal of Supercritical Fluids
    Pages 106420
  • 2024
    Title Interactions at the interfaces of the H2-brine-cement systems at elevated pressures for H2 storage
    DOI 10.1016/j.colsurfa.2024.134091
    Type Journal Article
    Author Villablanca-Ahues R
    Journal Colloids and Surfaces A: Physicochemical and Engineering Aspects
    Pages 134091
    Link Publication
  • 2023
    Title Interfacial tension and phase equilibria for binary systems containing (CH4-CO2)+(n-dodecane; n-butanol; water)
    DOI 10.1016/j.fluid.2023.113783
    Type Journal Article
    Author Villablanca-Ahues R
    Journal Fluid Phase Equilibria
    Pages 113783

Discovering
what
matters.

Newsletter

FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

Contact

Austrian Science Fund (FWF)
Georg-Coch-Platz 2
(Entrance Wiesingerstraße 4)
1010 Vienna

office(at)fwf.ac.at
+43 1 505 67 40

General information

  • Job Openings
  • Jobs at FWF
  • Press
  • Philanthropy
  • scilog
  • FWF Office
  • Social Media Directory
  • LinkedIn, external URL, opens in a new window
  • , external URL, opens in a new window
  • Facebook, external URL, opens in a new window
  • Instagram, external URL, opens in a new window
  • YouTube, external URL, opens in a new window
  • Cookies
  • Whistleblowing/Complaints Management
  • Accessibility Statement
  • Data Protection
  • Acknowledgements
  • IFG-Form
  • Social Media Directory
  • © Österreichischer Wissenschaftsfonds FWF
© Österreichischer Wissenschaftsfonds FWF