• Skip to content (access key 1)
  • Skip to search (access key 7)
FWF — Austrian Science Fund
  • Go to overview page Discover

    • Research Radar
      • Research Radar Archives 1974–1994
    • Discoveries
      • Emmanuelle Charpentier
      • Adrian Constantin
      • Monika Henzinger
      • Ferenc Krausz
      • Wolfgang Lutz
      • Walter Pohl
      • Christa Schleper
      • Elly Tanaka
      • Anton Zeilinger
    • Impact Stories
      • Verena Gassner
      • Wolfgang Lechner
      • Georg Winter
    • scilog Magazine
    • Austrian Science Awards
      • FWF Wittgenstein Awards
      • FWF ASTRA Awards
      • FWF START Awards
      • Award Ceremony
    • excellent=austria
      • Clusters of Excellence
      • Emerging Fields
    • In the Spotlight
      • 40 Years of Erwin Schrödinger Fellowships
      • Quantum Austria
    • Dialogs and Talks
      • think.beyond Summit
    • Knowledge Transfer Events
    • E-Book Library
  • Go to overview page Funding

    • Portfolio
      • excellent=austria
        • Clusters of Excellence
        • Emerging Fields
      • Projects
        • Principal Investigator Projects
        • Principal Investigator Projects International
        • Clinical Research
        • 1000 Ideas
        • Arts-Based Research
        • FWF Wittgenstein Award
      • Careers
        • ESPRIT
        • FWF ASTRA Awards
        • Erwin Schrödinger
        • doc.funds
        • doc.funds.connect
      • Collaborations
        • Specialized Research Groups
        • Special Research Areas
        • Research Groups
        • International – Multilateral Initiatives
        • #ConnectingMinds
      • Communication
        • Top Citizen Science
        • Science Communication
        • Book Publications
        • Digital Publications
        • Open-Access Block Grant
      • Subject-Specific Funding
        • AI Mission Austria
        • Belmont Forum
        • ERA-NET HERA
        • ERA-NET NORFACE
        • ERA-NET QuantERA
        • ERA-NET TRANSCAN
        • Alternative Methods to Animal Testing
        • European Partnership Biodiversa+
        • European Partnership BrainHealth
        • European Partnership ERA4Health
        • European Partnership ERDERA
        • European Partnership EUPAHW
        • European Partnership FutureFoodS
        • European Partnership OHAMR
        • European Partnership PerMed
        • European Partnership Water4All
        • Gottfried and Vera Weiss Award
        • netidee SCIENCE
        • Herzfelder Foundation Projects
        • Quantum Austria
        • Rückenwind Funding Bonus
        • WE&ME Award
        • Zero Emissions Award
      • International Collaborations
        • Belgium/Flanders
        • Germany
        • France
        • Italy/South Tyrol
        • Japan
        • Luxembourg
        • Poland
        • Switzerland
        • Slovenia
        • Taiwan
        • Tyrol–South Tyrol–Trentino
        • Czech Republic
        • Hungary
    • Step by Step
      • Find Funding
      • Submitting Your Application
      • International Peer Review
      • Funding Decisions
      • Carrying out Your Project
      • Closing Your Project
      • Further Information
        • Integrity and Ethics
        • Inclusion
        • Applying from Abroad
        • Personnel Costs
        • PROFI
        • Final Project Reports
        • Final Project Report Survey
    • FAQ
      • Project Phase PROFI
      • Project Phase Ad Personam
      • Expiring Programs
        • Elise Richter and Elise Richter PEEK
        • FWF START Awards
  • Go to overview page About Us

    • Mission Statement
    • FWF Video
    • Values
    • Facts and Figures
    • Annual Report
    • What We Do
      • Research Funding
        • Matching Funds Initiative
      • International Collaborations
      • Studies and Publications
      • Equal Opportunities and Diversity
        • Objectives and Principles
        • Measures
        • Creating Awareness of Bias in the Review Process
        • Terms and Definitions
        • Your Career in Cutting-Edge Research
      • Open Science
        • Open-Access Policy
          • Open-Access Policy for Peer-Reviewed Publications
          • Open-Access Policy for Peer-Reviewed Book Publications
          • Open-Access Policy for Research Data
        • Research Data Management
        • Citizen Science
        • Open Science Infrastructures
        • Open Science Funding
      • Evaluations and Quality Assurance
      • Academic Integrity
      • Science Communication
      • Philanthropy
      • Sustainability
    • History
    • Legal Basis
    • Organization
      • Executive Bodies
        • Executive Board
        • Supervisory Board
        • Assembly of Delegates
        • Scientific Board
        • Juries
      • FWF Office
    • Jobs at FWF
  • Go to overview page News

    • News
    • Press
      • Logos
    • Calendar
      • Post an Event
      • FWF Informational Events
    • Job Openings
      • Enter Job Opening
    • Newsletter
  • Discovering
    what
    matters.

    FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

    SOCIAL MEDIA

    • LinkedIn, external URL, opens in a new window
    • , external URL, opens in a new window
    • Facebook, external URL, opens in a new window
    • Instagram, external URL, opens in a new window
    • YouTube, external URL, opens in a new window

    SCILOG

    • Scilog — The science magazine of the Austrian Science Fund (FWF)
  • elane login, external URL, opens in a new window
  • Scilog external URL, opens in a new window
  • de Wechsle zu Deutsch

  

Water and the hydrophobic effect in biomolecular recognition

Water and the hydrophobic effect in biomolecular recognition

Michael Johannes Fink (ORCID: 0000-0003-0023-8767)
  • Grant DOI 10.55776/J3771
  • Funding program Erwin Schrödinger
  • Status ended
  • Start August 1, 2015
  • End June 30, 2019
  • Funding amount € 155,960

Disciplines

Biology (20%); Chemistry (80%)

Keywords

    Rational Drug Design, Hydrophobic Effect, Explicit Solvent Model, Carbonic Anhydrase, Biophysical Chemistry

Abstract Final report

Water is the ubiquitous fluid for all known forms of life. Despite this high importance, there is still no comprehensive theory able to explain all of its phenomena. Biomolecular recognition the process through which the molecules which make up living cells and its components interact selectively is also poorly understood on a molecular level. Many events in biomolecular recognition are driven by the hydrophobic effect. This effect is responsible for commonly known phenomena like the immiscibility of water and oil, or the formation of soap micelles. It is also an explanation for the general structure of proteins, and for the way drugs bind to receptors, often very selectively. Gaining deeper understanding of these natural processes could reduce the high cost of developing new and better drugs: this is then called rational drug design. This project systematically investigates some of the aspects how the unique properties of water and the hydrophobic effect influence biomolecular recognition. The hypothesis is, that many water molecules located at the surface of receptors or of the drug are energetically frustrated. Displacing these to the bulk of all water molecules by moving the receptor and the drug molecule closer together may then bring the system closer to its equilibrium. The key point is to find out, which water molecules are best to move, and which are best left untouched. It is assumed that this depends on the shape of the receptor, and the shape complementarity of the drug. To answer these questions experimentally a model system will be used: carbonic anhydrase. It is one of natures fastest catalyst and found in almost all living things, since it is the key respiratory enzyme: it liberates carbon dioxide from its hydrated form (bicarbonate) in the blood stream to be exhaled. Understandably, this enzyme is very well studied, but also easy to handle and to manipulate. This allows us to scrutinize the properties of water molecules at the surface of the receptor when a known drug molecule binds to it. The shape of the binding site will be modulated in order to find out how this affects the energetics of water at the modified spot. Similarly, the drug molecules will also be varied in shape, to be able to distinguish not only between large or small, and flat or spherical, but more detailed properties such as the volume, surface area, electric charge distribution and other molecular descriptors. These aspects have not been investigated so far. Taken together, the experimental findings will be compiled in a computational model, which eventually should predict a drug with superior binding capability. If successful, it is planned to try the method on a different target for validation.

Wasser ist die allgegenwärtige Flüssigkeit aller bekannten Lebensformen. Trotz dieser großen Bedeutung können bis dato nicht alle seine Phänomene in einer umfassenden Theorie erklärt werden. Ebenso rätselhaft ist die Biomolekülerkennung: ein Begriff, der alle Prozesse der spezifischen Interaktion von Molekülen in lebenden Zellen zusammenfasst. Viele dieser Ereignisse sind durch den hydrophoben Effekt bestimmt. Auf diesem Effekt beruhen einige bekannte biologische Phänomene wie die Nichtmischbarkeit von Wasser und Öl, oder die Mizellenbildung in Seifenlösungen. Er erklärt allerdings auch die allgemeine Struktur von Proteinen, und warum Arzneistoffe an Rezeptoren binden. Ein tieferes Verständnis dieser natürlichen Vorgänge könnte zur Reduktion des hohen finanziellen Aufwands zur Entwicklung neuer und besserer Medikamente beitragen, durch einen Prozess names rationaler Wirkstoffentwicklung. In diesem Projekt wurden Aspekte der besonderen Eigenschaften von Wasser untersucht und wie der hydrophobe Effekt auf die Biomolekülerkennung Einfluss nimmt. Wir vermuten, dass viele der Wassermoleküle an der Oberfläche des Rezeptors und des Wirkstoffes energetisch frustriert sind. Wenn diese durch eine engere Bindung der beiden Partner verdrängt werden und sich mit dem Gros des Wassers mischen, wird das gesamte System näher ans Gleichgewicht gerückt. Man muss nun herausfinden bei welchen Molekülen diese Verdrängung vorteilhaft ist, und welche lieber unangetastet bleiben. Wir nehmen an, dass die Form des Rezeptors und die gegengleiche Passform des Wirkstoffes darauf einen großen Einfluss hat. Diese Fragen wurden experimentell anhand des Modellsystems Carboanhydrase beantwortet. Dieses Enzym zählt zu den schnellsten natürlichen Katalysatoren und kommt in fast allen Lebewesen vor. Es ist daher bereits gut erforscht, und noch dazu einfach zu handhaben und zu manipulieren. Mit diesem molekularen Werkzeug kann man nun die Eigenschaften der Oberflächen-Wassermoleküle während des Bindungsvorganges mit einem Wirkstoff untersuchen. Gezielte Veränderungen der Struktur des Wirkstoffes geben darüber Auskunft, ob es nicht nur um grobe Einteilungen wie groß oder klein, und flach oder sphärisch geht, sondern viel mehr um genauere Eigenschaften wie Rauminhalt, Oberfläche, Verteilung elektrischer Ladungen und andere. Diese Betrachtungsweise wurde bisher noch nicht verfolgt. Wir haben den aktuellen Wissenstand sowie unsere Experteneinschätzung auf diesem Gebiet in zwei Übersichtsartikeln zusammengefasst.

Research institution(s)
  • Technische Universität Wien - 100%
  • Harvard University - 100%

Research Output

  • 159 Citations
  • 2 Publications
  • 1 Scientific Awards
Publications
  • 2018
    Title The Molecular Origin of Enthalpy/Entropy Compensation in Biomolecular Recognition
    DOI 10.1146/annurev-biophys-070816-033743
    Type Journal Article
    Author Fox J
    Journal Annual Review of Biophysics
    Pages 1-28
    Link Publication
  • 2017
    Title Redesign of water networks for efficient biocatalysis
    DOI 10.1016/j.cbpa.2017.02.013
    Type Journal Article
    Author Fink M
    Journal Current Opinion in Chemical Biology
    Pages 107-114
Scientific Awards
  • 2018
    Title 2018 ARIT Austrian Marshall Plan Foundation Poster Prize
    Type Poster/abstract prize
    Level of Recognition National (any country)

Discovering
what
matters.

Newsletter

FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

Contact

Austrian Science Fund (FWF)
Georg-Coch-Platz 2
(Entrance Wiesingerstraße 4)
1010 Vienna

office(at)fwf.ac.at
+43 1 505 67 40

General information

  • Job Openings
  • Jobs at FWF
  • Press
  • Philanthropy
  • scilog
  • FWF Office
  • Social Media Directory
  • LinkedIn, external URL, opens in a new window
  • , external URL, opens in a new window
  • Facebook, external URL, opens in a new window
  • Instagram, external URL, opens in a new window
  • YouTube, external URL, opens in a new window
  • Cookies
  • Whistleblowing/Complaints Management
  • Accessibility Statement
  • Data Protection
  • Acknowledgements
  • IFG-Form
  • Social Media Directory
  • © Österreichischer Wissenschaftsfonds FWF
© Österreichischer Wissenschaftsfonds FWF