• Skip to content (access key 1)
  • Skip to search (access key 7)
FWF — Austrian Science Fund
  • Go to overview page Discover

    • Research Radar
      • Research Radar Archives 1974–1994
    • Discoveries
      • Emmanuelle Charpentier
      • Adrian Constantin
      • Monika Henzinger
      • Ferenc Krausz
      • Wolfgang Lutz
      • Walter Pohl
      • Christa Schleper
      • Elly Tanaka
      • Anton Zeilinger
    • Impact Stories
      • Verena Gassner
      • Wolfgang Lechner
      • Georg Winter
    • scilog Magazine
    • Austrian Science Awards
      • FWF Wittgenstein Awards
      • FWF ASTRA Awards
      • FWF START Awards
      • Award Ceremony
    • excellent=austria
      • Clusters of Excellence
      • Emerging Fields
    • In the Spotlight
      • 40 Years of Erwin Schrödinger Fellowships
      • Quantum Austria
    • Dialogs and Talks
      • think.beyond Summit
    • Knowledge Transfer Events
    • E-Book Library
  • Go to overview page Funding

    • Portfolio
      • excellent=austria
        • Clusters of Excellence
        • Emerging Fields
      • Projects
        • Principal Investigator Projects
        • Principal Investigator Projects International
        • Clinical Research
        • 1000 Ideas
        • Arts-Based Research
        • FWF Wittgenstein Award
      • Careers
        • ESPRIT
        • FWF ASTRA Awards
        • Erwin Schrödinger
        • doc.funds
        • doc.funds.connect
      • Collaborations
        • Specialized Research Groups
        • Special Research Areas
        • Research Groups
        • International – Multilateral Initiatives
        • #ConnectingMinds
      • Communication
        • Top Citizen Science
        • Science Communication
        • Book Publications
        • Digital Publications
        • Open-Access Block Grant
      • Subject-Specific Funding
        • AI Mission Austria
        • Belmont Forum
        • ERA-NET HERA
        • ERA-NET NORFACE
        • ERA-NET QuantERA
        • ERA-NET TRANSCAN
        • Alternative Methods to Animal Testing
        • European Partnership Biodiversa+
        • European Partnership BrainHealth
        • European Partnership ERA4Health
        • European Partnership ERDERA
        • European Partnership EUPAHW
        • European Partnership FutureFoodS
        • European Partnership OHAMR
        • European Partnership PerMed
        • European Partnership Water4All
        • Gottfried and Vera Weiss Award
        • netidee SCIENCE
        • Herzfelder Foundation Projects
        • Quantum Austria
        • Rückenwind Funding Bonus
        • WE&ME Award
        • Zero Emissions Award
      • International Collaborations
        • Belgium/Flanders
        • Germany
        • France
        • Italy/South Tyrol
        • Japan
        • Luxembourg
        • Poland
        • Switzerland
        • Slovenia
        • Taiwan
        • Tyrol–South Tyrol–Trentino
        • Czech Republic
        • Hungary
    • Step by Step
      • Find Funding
      • Submitting Your Application
      • International Peer Review
      • Funding Decisions
      • Carrying out Your Project
      • Closing Your Project
      • Further Information
        • Integrity and Ethics
        • Inclusion
        • Applying from Abroad
        • Personnel Costs
        • PROFI
        • Final Project Reports
        • Final Project Report Survey
    • FAQ
      • Project Phase PROFI
      • Project Phase Ad Personam
      • Expiring Programs
        • Elise Richter and Elise Richter PEEK
        • FWF START Awards
  • Go to overview page About Us

    • Mission Statement
    • FWF Video
    • Values
    • Facts and Figures
    • Annual Report
    • What We Do
      • Research Funding
        • Matching Funds Initiative
      • International Collaborations
      • Studies and Publications
      • Equal Opportunities and Diversity
        • Objectives and Principles
        • Measures
        • Creating Awareness of Bias in the Review Process
        • Terms and Definitions
        • Your Career in Cutting-Edge Research
      • Open Science
        • Open-Access Policy
          • Open-Access Policy for Peer-Reviewed Publications
          • Open-Access Policy for Peer-Reviewed Book Publications
          • Open-Access Policy for Research Data
        • Research Data Management
        • Citizen Science
        • Open Science Infrastructures
        • Open Science Funding
      • Evaluations and Quality Assurance
      • Academic Integrity
      • Science Communication
      • Philanthropy
      • Sustainability
    • History
    • Legal Basis
    • Organization
      • Executive Bodies
        • Executive Board
        • Supervisory Board
        • Assembly of Delegates
        • Scientific Board
        • Juries
      • FWF Office
    • Jobs at FWF
  • Go to overview page News

    • News
    • Press
      • Logos
    • Calendar
      • Post an Event
      • FWF Informational Events
    • Job Openings
      • Enter Job Opening
    • Newsletter
  • Discovering
    what
    matters.

    FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

    SOCIAL MEDIA

    • LinkedIn, external URL, opens in a new window
    • , external URL, opens in a new window
    • Facebook, external URL, opens in a new window
    • Instagram, external URL, opens in a new window
    • YouTube, external URL, opens in a new window

    SCILOG

    • Scilog — The science magazine of the Austrian Science Fund (FWF)
  • elane login, external URL, opens in a new window
  • Scilog external URL, opens in a new window
  • de Wechsle zu Deutsch

  

Approximation of Conjunctive Query Evaluation

Approximation of Conjunctive Query Evaluation

Alexander Baumgartner (ORCID: )
  • Grant DOI 10.55776/J3909
  • Funding program Erwin Schrödinger
  • Status ended
  • Start November 1, 2016
  • End October 31, 2018
  • Funding amount € 148,610
  • Project website

Disciplines

Computer Sciences (80%); Mathematics (20%)

Keywords

    Approximate Evaluation of Intractable Conjunctive, Static Over-Approximation of Conjunctive Queries w, Dynamic Approximation of Conjunctive Queries with, Development of New Approximation Techniques for Co

Abstract Final report

Problems that cannot be solved by classical computers in reasonable time due to their high computational cost arise in many research areas. In general, the evaluation of conjunctive queries over relational databases belongs to those problems. Conjunctive queries form the core of the Structured Query Language (SQL) which became a de facto standard for querying and maintaining relational databases. This work is about developing new approximation techniques for conjunctive queries which cannot be evaluated in reasonable time. Our new approximation techniques should lead to significant improvements for data aided decision making, e.g., for early warning system which are based on the analysis of big data or to make business- critical decisions by analyzing big data. In the last decades, a very good understanding of the classes of conjunctive queries which can be evaluated in reasonable time has been gained and it has been proven that an under-approximation of a query always exists within each of those classes. However this approach is rather strict and some of the under-approximations can be rather uninformative, i.e., the under-approximation might return the empty result set while the original query would not. over-approximations might be helpful when this happens, as they return all answers to a query. One of our goals is to study the foundational aspects of over-approximations, including the existence problem and the problem of computing an approximation. Unfortunately, over-approximations do not always exist (within a class of queries which can be evaluated in reasonable time), and it is not even known to be decidable whether a conjunctive query admits an over- approximation. Therefore, another goal of the proposed work is the development of more liberal approximation techniques that yield some kind of quantitative guarantees. This means that they should guarantee that the result of the approximation is not too far from the result of the original query over a set of databases of interest. Therefore we need to define a measure of disagreement between queries and/or results. For conjunctive query evaluation, such measures do not exist up until now. Based on that measure, we study approximations whose disagreement with the result of the query they approximate is below a certain threshold. Furthermore, we investigate how the underlying data of a database can help us to find better approximations. It has been shown that there are close relations between the approximation of conjunctive queries over relational databases and some classes of Semantic Web queries over semi-structured data. We also study possible connections between our approximation techniques and approximating Semantic Web queries.

Supervised learning is a machine-learning technique that aims at learning a general model from input-output examples. The learned model can then be used to make decisions (in situations that never occurred before) based on some input data. A classifier is a function that partitions the input data, i.e., it makes the decisions. We investigated the case of classifying a set of constants, called entities, of a relational database into positive and negative cases. The learned classifier is based on a set of automatically generated database queries, called features. A training database is a databases with a partition of the entities into positive and negative examples. Using database queries allows us to utilize the entire knowledge of the raw data in the training database (i.e., all its relations). This knowledge is crucial to automatically generate the features. We consider various query languages, study the complexity of classifying the input examples and generating the feature queries, and give explicit algorithms for classification and feature generation. Moreover, we handle the case of approximate classification where the training database might contain a small amount of noise that makes an exact classification impossible. We identify tractable cases where classification and feature generation can be done efficiently. We show that, even though the feature generation problem is intractable for certain query lan- guages, the classification problem might be tractable (e.g., for conjunctive queries of a bounded generalized hypertree width), and we give an explicit algorithm for that case. This is possible because we do not need to materialize the feature queries in order to evaluate them. For all the identified tractable cases, we show that approximate classification is also tractable and give explicit algorithms.

Research institution(s)
  • Universidad de Santiago de Chile - 100%

Discovering
what
matters.

Newsletter

FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

Contact

Austrian Science Fund (FWF)
Georg-Coch-Platz 2
(Entrance Wiesingerstraße 4)
1010 Vienna

office(at)fwf.ac.at
+43 1 505 67 40

General information

  • Job Openings
  • Jobs at FWF
  • Press
  • Philanthropy
  • scilog
  • FWF Office
  • Social Media Directory
  • LinkedIn, external URL, opens in a new window
  • , external URL, opens in a new window
  • Facebook, external URL, opens in a new window
  • Instagram, external URL, opens in a new window
  • YouTube, external URL, opens in a new window
  • Cookies
  • Whistleblowing/Complaints Management
  • Accessibility Statement
  • Data Protection
  • Acknowledgements
  • IFG-Form
  • Social Media Directory
  • © Österreichischer Wissenschaftsfonds FWF
© Österreichischer Wissenschaftsfonds FWF