• Skip to content (access key 1)
  • Skip to search (access key 7)
FWF — Austrian Science Fund
  • Go to overview page Discover

    • Research Radar
      • Research Radar Archives 1974–1994
    • Discoveries
      • Emmanuelle Charpentier
      • Adrian Constantin
      • Monika Henzinger
      • Ferenc Krausz
      • Wolfgang Lutz
      • Walter Pohl
      • Christa Schleper
      • Elly Tanaka
      • Anton Zeilinger
    • Impact Stories
      • Verena Gassner
      • Wolfgang Lechner
      • Georg Winter
    • scilog Magazine
    • Austrian Science Awards
      • FWF Wittgenstein Awards
      • FWF ASTRA Awards
      • FWF START Awards
      • Award Ceremony
    • excellent=austria
      • Clusters of Excellence
      • Emerging Fields
    • In the Spotlight
      • 40 Years of Erwin Schrödinger Fellowships
      • Quantum Austria
    • Dialogs and Talks
      • think.beyond Summit
    • Knowledge Transfer Events
    • E-Book Library
  • Go to overview page Funding

    • Portfolio
      • excellent=austria
        • Clusters of Excellence
        • Emerging Fields
      • Projects
        • Principal Investigator Projects
        • Principal Investigator Projects International
        • Clinical Research
        • 1000 Ideas
        • Arts-Based Research
        • FWF Wittgenstein Award
      • Careers
        • ESPRIT
        • FWF ASTRA Awards
        • Erwin Schrödinger
        • doc.funds
        • doc.funds.connect
      • Collaborations
        • Specialized Research Groups
        • Special Research Areas
        • Research Groups
        • International – Multilateral Initiatives
        • #ConnectingMinds
      • Communication
        • Top Citizen Science
        • Science Communication
        • Book Publications
        • Digital Publications
        • Open-Access Block Grant
      • Subject-Specific Funding
        • AI Mission Austria
        • Belmont Forum
        • ERA-NET HERA
        • ERA-NET NORFACE
        • ERA-NET QuantERA
        • ERA-NET TRANSCAN
        • Alternative Methods to Animal Testing
        • European Partnership Biodiversa+
        • European Partnership BrainHealth
        • European Partnership ERA4Health
        • European Partnership ERDERA
        • European Partnership EUPAHW
        • European Partnership FutureFoodS
        • European Partnership OHAMR
        • European Partnership PerMed
        • European Partnership Water4All
        • Gottfried and Vera Weiss Award
        • netidee SCIENCE
        • Herzfelder Foundation Projects
        • Quantum Austria
        • Rückenwind Funding Bonus
        • WE&ME Award
        • Zero Emissions Award
      • International Collaborations
        • Belgium/Flanders
        • Germany
        • France
        • Italy/South Tyrol
        • Japan
        • Luxembourg
        • Poland
        • Switzerland
        • Slovenia
        • Taiwan
        • Tyrol–South Tyrol–Trentino
        • Czech Republic
        • Hungary
    • Step by Step
      • Find Funding
      • Submitting Your Application
      • International Peer Review
      • Funding Decisions
      • Carrying out Your Project
      • Closing Your Project
      • Further Information
        • Integrity and Ethics
        • Inclusion
        • Applying from Abroad
        • Personnel Costs
        • PROFI
        • Final Project Reports
        • Final Project Report Survey
    • FAQ
      • Project Phase PROFI
      • Project Phase Ad Personam
      • Expiring Programs
        • Elise Richter and Elise Richter PEEK
        • FWF START Awards
  • Go to overview page About Us

    • Mission Statement
    • FWF Video
    • Values
    • Facts and Figures
    • Annual Report
    • What We Do
      • Research Funding
        • Matching Funds Initiative
      • International Collaborations
      • Studies and Publications
      • Equal Opportunities and Diversity
        • Objectives and Principles
        • Measures
        • Creating Awareness of Bias in the Review Process
        • Terms and Definitions
        • Your Career in Cutting-Edge Research
      • Open Science
        • Open-Access Policy
          • Open-Access Policy for Peer-Reviewed Publications
          • Open-Access Policy for Peer-Reviewed Book Publications
          • Open-Access Policy for Research Data
        • Research Data Management
        • Citizen Science
        • Open Science Infrastructures
        • Open Science Funding
      • Evaluations and Quality Assurance
      • Academic Integrity
      • Science Communication
      • Philanthropy
      • Sustainability
    • History
    • Legal Basis
    • Organization
      • Executive Bodies
        • Executive Board
        • Supervisory Board
        • Assembly of Delegates
        • Scientific Board
        • Juries
      • FWF Office
    • Jobs at FWF
  • Go to overview page News

    • News
    • Press
      • Logos
    • Calendar
      • Post an Event
      • FWF Informational Events
    • Job Openings
      • Enter Job Opening
    • Newsletter
  • Discovering
    what
    matters.

    FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

    SOCIAL MEDIA

    • LinkedIn, external URL, opens in a new window
    • , external URL, opens in a new window
    • Facebook, external URL, opens in a new window
    • Instagram, external URL, opens in a new window
    • YouTube, external URL, opens in a new window

    SCILOG

    • Scilog — The science magazine of the Austrian Science Fund (FWF)
  • elane login, external URL, opens in a new window
  • Scilog external URL, opens in a new window
  • de Wechsle zu Deutsch

  

Novel Material Combinations for Thermionic Energy Converters

Novel Material Combinations for Thermionic Energy Converters

Peter Schindler (ORCID: 0000-0002-1319-6570)
  • Grant DOI 10.55776/J3980
  • Funding program Erwin Schrödinger
  • Status ended
  • Start January 4, 2017
  • End February 3, 2021
  • Funding amount € 161,110
  • Project website

Disciplines

Nanotechnology (50%); Physics, Astronomy (50%)

Keywords

    Thermionic Energy Converters, Low Work Function Materials, Nanofabrication, Renewable Energy, Microelectromechanical Systems (Mems), High-Efficiency, Low-Cost Energy Conversion

Abstract Final report

To meet growing energy demands and to reduce greenhouse gas emissions, more efficient methods of energy conversion are needed. Thermionic energy conversion is a promising approach to generate renewable energy directly from waste heat. Thermionic energy converters (TECs) are heat engines that convert heat from high- temperature sources directly into electricity by thermionic emission of electrons from a hot electrode (cathode) into vacuum, which are collected by a cooler electrode (anode). They are highly attractive for its compactness, and scalability. Further, the theoretical efficiency of a TEC (>50%) is much higher than other solid-state technologies (e.g. thermoelectrics, typically <10%). However, the experimentally achieved efficiencies for TECs have been rather low (<15%) due to space charge limitations and lack of low work function (WF) anode materials. By applying modern material combinations and 21st-century wafer-scale fabrication methods, this project aims to overcome these limitations and reach an efficiency of 35%, which would make TECs highly attractive for micro co-generation, small-scale power applications and as topping cycles for existing heat engines. While the previously conventional thermionic architectures relied upon expensive serial precision machining, modern micro- and nanofabrication is a proven route to low-cost, high precision parallel manufacturing. Nanofabrication techniques will enable the applicant, Peter Schindler, to develop novel TECs with ultra-high conversion efficiencies. To achieve this goal, the applicant will utilize his semiconductor processing expertise to enable: (i) new lower WF anode materials and its implementation in a micro-gap TEC architecture to (ii) eliminate the space charge problem and (iii) reduce TEC costs by employing modern micro- and nanofabrication methods. Two new approaches for low WF materials are explored: First, an effect that occurs at the surface of a semiconductor under illumination and second, the biasing of a two-dimensional material. TEC architectures with a micron-scale vacuum gap between the electrodes mitigate the space charge. The main challenges for implementing the new anode in the micro-gap TEC architecture are to ensure the stability of the anode at high operating temperatures and to mitigate electron reflectivity of the anode surface. Combining, for the first time, novel low WF materials with the new TEC architecture will open an avenue towards high-efficiency, low-cost TECs that are scalable from Watts to Megawatts.

Erneuerbare Energielösungen sind entscheidend, um den Klimawandel und die daraus resultierenden Herausforderungen zu bekämpfen. Die Umwandlung von Wärme in Elektrizität ist ein vielversprechender Weg zur Verringerung der Energieverschwendung und der dadurch resultierenden Reduzierung der Kohlendioxidemissionen. Die thermionische Energieumwandlung (TEC) ist ein Prozess, bei dem Wärme in Elektrizität umgewandelt wird, durch thermionische Emission von Elektronen aus einer erhitzten Elektrode (Kathode) die an einer kühleren Elektrode (Anode) gesammelt werden. Thermionische Umwandler sind aufgrund des Auskommens ohne beweglicher Teile, der Kompaktheit, der Skalierbarkeit und des hohen theoretischen Umwandlungswirkungsgrades (>35%) sehr attraktiv. Allerdings sind die experimentell erreichten Wirkungsgrade für TECs aufgrund von Gerätebeschränkungen und dem Mangel an Anodenmaterialien mit niedriger Austrittsarbeit eher gering (<15%). Die Austrittsarbeit (work function) ist der fundamentale Oberflächenparameter eines Materials, der bestimmt, wie leicht Elektronen ins Vakuum entweichen können. Während dieses Erwin-Schrödinger-Stipendiums an der Stanford University und der Universität Wien konzentrierte ich mich auf die Entdeckung neuer Materialien mit ultraniedriger Austrittsarbeit für hocheffiziente TECs der nächsten Generation. Mit Hilfe der Dichtefunktionaltheorie habe ich die Austrittsarbeit von alkalibedeckten Halbleitern vorhergesagt und eine ultraniedrige Austrittsarbeit von Cäsium/Sauerstoff-bedecktem Galliumarsenid experimentell verifiziert. Eine weitere Verringerung der Austrittsarbeit wird erreicht, indem ein Laser auf den Halbleiter gerichtet wird, der eine zusätzliche Verschiebung der Energiestruktur des Materials (genannt Oberflächenphotospannungseffekt bzw. surface photovoltage effect) bis zu einem rekordtiefen Wert von 0,7 eV induziert. Wir haben dieses neue Konzept auf die Anode eines TEC-Prototyps angewandt, um die Umsetzbarkeit für zukünftige hocheffiziente Energieumwandlungsanwendungen zu demonstrieren. Um die Reichweite meines Ziels der Materialentdeckung zu erhöhen, konzentrierte ich mich auf die Entwicklung einer high-throughput computergestützten Methode, um eine breite Palette von Materialien auf potenzielle Kandidaten mit niedriger Austrittsarbeit zu durchsuchen. Mit Hilfe von Hochleistungscomputern konnte ich mit diesem Ansatz eine Austrittsarbeit-Datenbank von über 30.000 Materialoberflächen erstellen. Diese Datenbank bildet die Grundlage für ein Modell durch maschinelles Lernen, das die Vorhersage der Austrittsarbeit mit hoher Genauigkeit bei einem Bruchteil der Rechenkosten ermöglicht. Mit diesem datengetriebenen Ansatz habe ich einen breiten chemischen Raum nach Materialoberflächen mit extremen Austrittsarbeiten durchsucht und über 100 neue Materialoberflächen mit ultraniedriger und ultrahoher Austrittsarbeit entdeckt. Darüber hinaus war dieses statistische Modell eine entscheidende Komponente für einen neuen Material-Screening-Ansatz, den wir entwickelt haben, um Photokathodenmaterialien der nächsten Generation zu identifizieren. Die wissenschaftlichen Errungenschaften dieses Projekts ebnen den Weg für ein effizientes Screening eines breiten Spektrums möglicher Materialien auf neue Kandidaten mit niedriger Austrittsarbeit für hocheffiziente thermionische Umwandler, Elektronenemissionsgeräte und Photokathodenanwendungen.

Research institution(s)
  • Stanford University - 100%
  • Universität Wien - 100%
International project participants
  • Andreas Schmid, Lawrence Berkeley National Laboratory - USA
  • Nicholas A. Melosh, Stanford University - USA

Research Output

  • 175 Citations
  • 9 Publications
  • 2 Datasets & models
  • 1 Disseminations
Publications
  • 2024
    Title Discovery of Stable Surfaces with Extreme Work Functions by High-Throughput Density Functional Theory and Machine Learning
    DOI 10.1002/adfm.202401764
    Type Journal Article
    Author Schindler P
    Journal Advanced Functional Materials
    Link Publication
  • 2021
    Title Direct Integration of Strained-Pt Catalysts into Proton-Exchange-Membrane Fuel Cells with Atomic Layer Deposition
    DOI 10.1002/adma.202007885
    Type Journal Article
    Author Xu S
    Journal Advanced Materials
    Pages 2007885
    Link Publication
  • 2020
    Title Discovery of materials with extreme work functions by high-throughput density functional theory and machine learning
    Type Other
    Author Antoniuk E R
    Link Publication
  • 2018
    Title Extending the limits of Pt/C catalysts with passivation-gas-incorporated atomic layer deposition
    DOI 10.1038/s41929-018-0118-1
    Type Journal Article
    Author Xu S
    Journal Nature Catalysis
    Pages 624-630
    Link Publication
  • 2020
    Title Discovery of stable surfaces with extreme work functions by high-throughput density functional theory and machine learning
    DOI 10.48550/arxiv.2011.10905
    Type Preprint
    Author Schindler P
  • 2020
    Title Generalizable density functional theory based photoemission model for the accelerated development of photocathodes and other photoemissive devices
    DOI 10.1103/physrevb.101.235447
    Type Journal Article
    Author Antoniuk E
    Journal Physical Review B
    Pages 235447
    Link Publication
  • 2019
    Title Electrical Properties of Ultrathin Platinum Films by Plasma-Enhanced Atomic Layer Deposition
    DOI 10.1021/acsami.8b21054
    Type Journal Article
    Author Kim H
    Journal ACS Applied Materials & Interfaces
    Pages 9594-9599
    Link Publication
  • 2019
    Title Keggin-type polyoxotungstates as mushroom tyrosinase inhibitors - A speciation study
    DOI 10.1038/s41598-019-41261-7
    Type Journal Article
    Author Breibeck J
    Journal Scientific Reports
    Pages 5183
    Link Publication
  • 2019
    Title Surface Photovoltage-Induced Ultralow Work Function Material for Thermionic Energy Converters
    DOI 10.1021/acsenergylett.9b01214
    Type Journal Article
    Author Schindler P
    Journal ACS Energy Letters
    Pages 2436-2443
    Link Publication
Datasets & models
  • 2020 Link
    Title Work Function Database
    Type Database/Collection of data
    Public Access
    Link Link
  • 2020 Link
    Title Machine Learning Model of Material Work Functions
    Type Computer model/algorithm
    Public Access
    Link Link
Disseminations
  • 2019 Link
    Title Austrian news coverage of low work function research
    Type A press release, press conference or response to a media enquiry/interview
    Link Link

Discovering
what
matters.

Newsletter

FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

Contact

Austrian Science Fund (FWF)
Georg-Coch-Platz 2
(Entrance Wiesingerstraße 4)
1010 Vienna

office(at)fwf.ac.at
+43 1 505 67 40

General information

  • Job Openings
  • Jobs at FWF
  • Press
  • Philanthropy
  • scilog
  • FWF Office
  • Social Media Directory
  • LinkedIn, external URL, opens in a new window
  • , external URL, opens in a new window
  • Facebook, external URL, opens in a new window
  • Instagram, external URL, opens in a new window
  • YouTube, external URL, opens in a new window
  • Cookies
  • Whistleblowing/Complaints Management
  • Accessibility Statement
  • Data Protection
  • Acknowledgements
  • IFG-Form
  • Social Media Directory
  • © Österreichischer Wissenschaftsfonds FWF
© Österreichischer Wissenschaftsfonds FWF