• Skip to content (access key 1)
  • Skip to search (access key 7)
FWF — Austrian Science Fund
  • Go to overview page Discover

    • Research Radar
      • Research Radar Archives 1974–1994
    • Discoveries
      • Emmanuelle Charpentier
      • Adrian Constantin
      • Monika Henzinger
      • Ferenc Krausz
      • Wolfgang Lutz
      • Walter Pohl
      • Christa Schleper
      • Elly Tanaka
      • Anton Zeilinger
    • Impact Stories
      • Verena Gassner
      • Wolfgang Lechner
      • Georg Winter
    • scilog Magazine
    • Austrian Science Awards
      • FWF Wittgenstein Awards
      • FWF ASTRA Awards
      • FWF START Awards
      • Award Ceremony
    • excellent=austria
      • Clusters of Excellence
      • Emerging Fields
    • In the Spotlight
      • 40 Years of Erwin Schrödinger Fellowships
      • Quantum Austria
    • Dialogs and Talks
      • think.beyond Summit
    • Knowledge Transfer Events
    • E-Book Library
  • Go to overview page Funding

    • Portfolio
      • excellent=austria
        • Clusters of Excellence
        • Emerging Fields
      • Projects
        • Principal Investigator Projects
        • Principal Investigator Projects International
        • Clinical Research
        • 1000 Ideas
        • Arts-Based Research
        • FWF Wittgenstein Award
      • Careers
        • ESPRIT
        • FWF ASTRA Awards
        • Erwin Schrödinger
        • doc.funds
        • doc.funds.connect
      • Collaborations
        • Specialized Research Groups
        • Special Research Areas
        • Research Groups
        • International – Multilateral Initiatives
        • #ConnectingMinds
      • Communication
        • Top Citizen Science
        • Science Communication
        • Book Publications
        • Digital Publications
        • Open-Access Block Grant
      • Subject-Specific Funding
        • AI Mission Austria
        • Belmont Forum
        • ERA-NET HERA
        • ERA-NET NORFACE
        • ERA-NET QuantERA
        • ERA-NET TRANSCAN
        • Alternative Methods to Animal Testing
        • European Partnership Biodiversa+
        • European Partnership BrainHealth
        • European Partnership ERA4Health
        • European Partnership ERDERA
        • European Partnership EUPAHW
        • European Partnership FutureFoodS
        • European Partnership OHAMR
        • European Partnership PerMed
        • European Partnership Water4All
        • Gottfried and Vera Weiss Award
        • netidee SCIENCE
        • Herzfelder Foundation Projects
        • Quantum Austria
        • Rückenwind Funding Bonus
        • WE&ME Award
        • Zero Emissions Award
      • International Collaborations
        • Belgium/Flanders
        • Germany
        • France
        • Italy/South Tyrol
        • Japan
        • Luxembourg
        • Poland
        • Switzerland
        • Slovenia
        • Taiwan
        • Tyrol–South Tyrol–Trentino
        • Czech Republic
        • Hungary
    • Step by Step
      • Find Funding
      • Submitting Your Application
      • International Peer Review
      • Funding Decisions
      • Carrying out Your Project
      • Closing Your Project
      • Further Information
        • Integrity and Ethics
        • Inclusion
        • Applying from Abroad
        • Personnel Costs
        • PROFI
        • Final Project Reports
        • Final Project Report Survey
    • FAQ
      • Project Phase PROFI
      • Project Phase Ad Personam
      • Expiring Programs
        • Elise Richter and Elise Richter PEEK
        • FWF START Awards
  • Go to overview page About Us

    • Mission Statement
    • FWF Video
    • Values
    • Facts and Figures
    • Annual Report
    • What We Do
      • Research Funding
        • Matching Funds Initiative
      • International Collaborations
      • Studies and Publications
      • Equal Opportunities and Diversity
        • Objectives and Principles
        • Measures
        • Creating Awareness of Bias in the Review Process
        • Terms and Definitions
        • Your Career in Cutting-Edge Research
      • Open Science
        • Open-Access Policy
          • Open-Access Policy for Peer-Reviewed Publications
          • Open-Access Policy for Peer-Reviewed Book Publications
          • Open-Access Policy for Research Data
        • Research Data Management
        • Citizen Science
        • Open Science Infrastructures
        • Open Science Funding
      • Evaluations and Quality Assurance
      • Academic Integrity
      • Science Communication
      • Philanthropy
      • Sustainability
    • History
    • Legal Basis
    • Organization
      • Executive Bodies
        • Executive Board
        • Supervisory Board
        • Assembly of Delegates
        • Scientific Board
        • Juries
      • FWF Office
    • Jobs at FWF
  • Go to overview page News

    • News
    • Press
      • Logos
    • Calendar
      • Post an Event
      • FWF Informational Events
    • Job Openings
      • Enter Job Opening
    • Newsletter
  • Discovering
    what
    matters.

    FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

    SOCIAL MEDIA

    • LinkedIn, external URL, opens in a new window
    • , external URL, opens in a new window
    • Facebook, external URL, opens in a new window
    • Instagram, external URL, opens in a new window
    • YouTube, external URL, opens in a new window

    SCILOG

    • Scilog — The science magazine of the Austrian Science Fund (FWF)
  • elane login, external URL, opens in a new window
  • Scilog external URL, opens in a new window
  • de Wechsle zu Deutsch

  

Structured Non-Hermitian Random Matrices

Structured Non-Hermitian Random Matrices

David Renfrew (ORCID: 0000-0003-3493-121X)
  • Grant DOI 10.55776/M2080
  • Funding program Lise Meitner
  • Status ended
  • Start January 1, 2017
  • End January 31, 2020
  • Funding amount € 161,220
  • Project website

Disciplines

Mathematics (75%); Physics, Astronomy (25%)

Keywords

    Random Matrices, Eigenvalues, Non-Hermitian

Abstract Final report

The study of random matrices began in the 1950s with the pioneering work of Wigner to model the energy spacings of heavy nuclei. One of the primary interests in studying the spectral properties of random matrices comes from the universality phenomenon, that sufficiently complex systems can be effectively modeled by randomness. This idea has been used in physics to describe models beyond Wigners, in mathematics to study zeros of the Riemann zeta function, in engineering for wireless communication design, and many other research areas. Despite the ubiquity of random matrix statistics in numerous applications, there still remain many open questions in understanding universality of random matrices. Random matrices provide concrete models for investigating these universal statistics and are a powerful tool in mathematical modeling. Although they have successfully been used in a variety of applications, many current results require the entries of the random matrix to have the same distribution and a large amount of independence. In many examples, this is too restrictive and interesting phenomenon is not captured. In my research, I consider random matrix ensembles where more structure is imposed on the matrix or polynomials of random matrices are considered. It is conjectured that the local statistics of eigenvalues should appear in a large number of physical system. A first step toward this conjecture is to understand this universality phenomenon within random matrices but with the presence of additional structure and dependence. As an application of this research, I am working with biophysicist to apply spectral properties of random matrices to the dynamics of neural networks. We are interested in how the arrangement of networks in the brain effects the dynamics of neural activity. We have found that clustering of neurons can facilitate or inhibit chaotic dynamics.

Viele moderne Probleme in Wissenschaft und Technik involvieren hochdimensionale Systeme mit komplexen Wechselwirkungen zwischen verschiedenen Komponenten. In solchen Systemen ist es unmöglich, jede Interaktion genau zu kennen. Seit der Pionierarbeit von Wigner in den 1950er Jahren zur Modellierung der Energiezustände schwerer Atomkerne sind Zufallsmatrizen zu einem wertvollen Werkzeug geworden, um hochdimensionale Phänomene zu verstehen. Die zentrale Erkenntnis ist, dass ausreichend komplexe Systeme "selbstmittelnd" werden und durch Zufälligkeit effektiv modelliert werden können. Diese Einsicht wurde in der Physik zur Beschreibung von Modellen jenseits des Wigner'schen, in der Mathematik zur Untersuchung von Nullen der Riemannschen Zeta- Funktion, in der Technik fur das Design drahtloser Kommunikation und in vielen anderen Forschungsfeldern verwendet. Trotz ihrer Allgegenwart in Anwendungen sind die Eigenschaften vieler Klassen von Zufallsmatrizen nicht sehr gut verstanden, was ihre Gultigkeit als Modellierungswerkzeug einschränkt. Ziel dieses Projekts ist die Untersuchung universeller Eigenschaften einer breiteren Klasse von Zufallsmatrix und ihrer Anwendungen auf die Dynamik großer, komplexer Systeme. Bis vor Kurzem war eine wichtige technische Annahme bei der Untersuchung von Zufallsmatrizen, dass die Einträge alle unabhängig und identisch verteilt sind. In Bezug auf die Modellierung dynamischer Systeme entspricht dies der Annahme, dass jede Komponente mit jeder anderen in gleicher Weise interagiert, ohne Einwirkung anderer Interaktionen. Dies ermöglicht die Einbeziehung räumlicher Information, sodass zwei Komponenten immer schwächere Wechselwirkungen aufweisen, je weiter sie voneinander entfernt sind. Es wird dadurch auch die Korrelation zwischen verschiedenen Verbindungen berucksichtigt. Ein wichtiges Beispiel ist wechselseitige Korrelation, denn mit dem Wissen, dass eine Komponente mit einer anderen interagiert, kann man erwarten, dass die zweite Komponente auch Einfluss auf die ersten hat. Als Anwendung unseres Verständnisses des Spektrums großer Zufallsmatrizen beweisen wir universelles Verhalten im Langzeitverhalten der Lösung eines großen Systems von linearen Differentialgleichungen mit Zufallskoeffzienten. Besonders bemerkenswert ist, dass in dem kritisch gekoppelten Regime- ein wichtiger Fall fur neurowissenschaftliche Modelle -die Lösung fur eine große Klasse von Zufallsmatrizen eine universelle polynomiale Abfallsrate aufweist. In solch großen Systemen ist es unmöglich, alle Einzelverbindungen zu messen, aber diese Ergebnisse zu Universalität implizieren, dass Systeme ähnliches Verhalten zeigen, solange einige Grundannahmen erfullt sind.

Research institution(s)
  • Institute of Science and Technology Austria - ISTA - 100%

Research Output

  • 42 Citations
  • 7 Publications
Publications
  • 2018
    Title Non-Hermitian random matrices with a variance profile (I): deterministic equivalents and limiting ESDs
    DOI 10.1214/18-ejp230
    Type Journal Article
    Author Cook N
    Journal Electronic Journal of Probability
    Link Publication
  • 2017
    Title Power law decay for systems of randomly coupled differential equations
    DOI 10.48550/arxiv.1708.01546
    Type Preprint
    Author Erdos L
  • 2018
    Title Power Law Decay for Systems of Randomly Coupled Differential Equations
    DOI 10.1137/17m1143125
    Type Journal Article
    Author Erdo¨S L
    Journal SIAM Journal on Mathematical Analysis
    Pages 3271-3290
    Link Publication
  • 2020
    Title Non-Hermitian random matrices with a variance profile (II): properties and examples
    DOI 10.48550/arxiv.2007.15438
    Type Preprint
    Author Cook N
  • 2019
    Title Randomly coupled differential equations with elliptic correlations
    DOI 10.48550/arxiv.1908.05178
    Type Preprint
    Author Erdos L
  • 2021
    Title Non-Hermitian Random Matrices with a Variance Profile (II): Properties and Examples
    DOI 10.1007/s10959-021-01140-2
    Type Journal Article
    Author Cook N
    Journal Journal of Theoretical Probability
    Pages 2343-2382
  • 2023
    Title Randomly coupled differential equations with elliptic correlations
    DOI 10.1214/22-aap1886
    Type Journal Article
    Author Erdos L
    Journal The Annals of Applied Probability

Discovering
what
matters.

Newsletter

FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

Contact

Austrian Science Fund (FWF)
Georg-Coch-Platz 2
(Entrance Wiesingerstraße 4)
1010 Vienna

office(at)fwf.ac.at
+43 1 505 67 40

General information

  • Job Openings
  • Jobs at FWF
  • Press
  • Philanthropy
  • scilog
  • FWF Office
  • Social Media Directory
  • LinkedIn, external URL, opens in a new window
  • , external URL, opens in a new window
  • Facebook, external URL, opens in a new window
  • Instagram, external URL, opens in a new window
  • YouTube, external URL, opens in a new window
  • Cookies
  • Whistleblowing/Complaints Management
  • Accessibility Statement
  • Data Protection
  • Acknowledgements
  • IFG-Form
  • Social Media Directory
  • © Österreichischer Wissenschaftsfonds FWF
© Österreichischer Wissenschaftsfonds FWF