Exploiting infinite dimensions for quantum information
Exploiting infinite dimensions for quantum information
Disciplines
Physics, Astronomy (100%)
Keywords
-
Quantum Correlations,
High-Dimensional Systems,
Entanglement,
Quantum Information
Quantum effects are the basis for the advancement of modern ways of communication, information processing and computation. Most of the existing proposals and techniques behind the quantum advantage on present technologies are based on the creation, manipulation, and control of qubits. Qubits are the quantum version of the classic binary bit, physically realized with a two-state device. States that, in this exciting case, can be in a coherent superposition, creating intricate interference phenomena. With this proposal, we want to explore new tools to exploit the quantum characteristics of infinite-dimensional systems, I.e. electromagnetic fields, for such applications. Most probably the most efficient architectures for the effective transmission and storage of quantum information, and also of optimal quantum engines, are going to be of hybrid nature, exploiting the benefits of qubits and fields altogether. These two types of systems have fundamentally different mathematical descriptions that mark a consistent division within the quantum information community. We aim to strengthen an alliance between the two parts, advancing in the informational-theoretic study of hybrid --finite and infinite-dimensional-- systems, identifying better resources for reliable measurement of states and correlations, and understanding the definite role of discretization strategies for their characterization. The new techniques will help researchers mathematically describe and quantify quantum correlations in multipartite systems. Studying these multi-dimensional entangled states of complex quantum systems may point to a more practical way to build high-efficiency quantum computers and more effective communication. We ambition to develop unified and accessible theoretical methods for characterizing, verifying, and benchmarking the quantum properties of such hybrid systems.
Quanteneffekte sind die Grundlage der modernen Kommunikation, Informationsverarbeitung und Berechnung durch die Manipulation von Quantenzuständen, wie z. B. Qubits, die zu kohärenten Überlagerungen und komplizierten Interferenzen fähig sind. Diese Quantensysteme können diskret und endlich-dimensional (z. B. polarisierte einzelne Photonen) oder kontinuierlich und unendlich-dimensional (z. B. elektromagnetische Felder) sein. Während endlich-dimensionale Systeme gut verstanden sind, sind unendlich-dimensionale Systeme für die Quanteninformationsverarbeitung noch nicht ausreichend erforscht. Wir konzentrieren uns auf kontinuierlich veränderliche und hybride Zustände, die Qubits und Felder kombinieren. Trotz ihrer unterschiedlichen mathematischen Beschreibungen haben wir verschiedene Vorstellungen von Verschränkung in Teilchen und Feldern rigoros berücksichtigt und eindeutig gezeigt, dass diese Verschränkungsstrukturen nicht nur, wie bekannt, unterschiedlich, sondern sogar unabhängig sind. Zusätzlich zu den Korrelationen von Zuständen erforschen wir die Verschränkung für Nachweise in Theorie und Experiment und stellen damit ein vielseitiges Instrumentarium für die Analyse von Quantenkorrelationsmerkmalen bereit. Wir stellen auch die Äquivalenz zwischen nicht-klassischer Polarisation und Photonenverschränkung fest und vereinen damit zwei scheinbar disparate Phänomene. Wir haben auch gezeigt, dass echte mehrteilige Verschränkung durch Multikopie in unendlichen Dimensionen aktivierbar ist. Diese Art der Verschränkung ist für eine effiziente Quantenkommunikation in komplexen Netzwerken von entscheidender Bedeutung und war bisher nur für endlich dimensionale Zustände bekannt. Diese Fortschritte verbessern unser Verständnis von Quantensystemen und treiben den Fortschritt in Richtung hocheffizienter Quantencomputer und -kommunikationssysteme voran. Unsere Ergebnisse tragen zu einem einheitlichen Rahmen für die Charakterisierung komplexer Quantensysteme bei und fördern so den Fortschritt in der Quantentechnologie.
- Technische Universität Wien - 100%
Research Output
- 7 Citations
- 7 Publications
- 14 Disseminations
- 6 Scientific Awards
-
2025
Title Multi-copy activation of genuine multipartite entanglement in continuous-variable systems DOI 10.22331/q-2025-04-09-1699 Type Journal Article Author Baksová K Journal Quantum Pages 1699 Link Publication -
2022
Title Quantum researcher mobility: the wonderful wizard of Oz who paid for Dorothy’s visa fees DOI 10.1088/2058-9565/ac77b3 Type Journal Article Author Malik M Journal Quantum Science & Technology Pages 034005 Link Publication -
2022
Title Quantum researcher mobility: the wonderful wizard of Oz who paid for Dorothy's Visa fees DOI 10.48550/arxiv.2203.02371 Type Preprint Author Malik M -
2023
Title Entanglement of particles versus entanglement of fields: Independent quantum resources DOI 10.1103/physreva.107.042420 Type Journal Article Author Sperling J Journal Physical Review A Pages 042420 -
2023
Title Multi-copy activation of genuine multipartite entanglement in continuous-variable systems Type Other Author Baksová K Link Publication -
2023
Title Detector entanglement: Quasidistributions for Bell-state measurements DOI 10.1103/physreva.107.012426 Type Journal Article Author Sperling J Journal Physical Review A Pages 012426 -
2023
Title Multi-copy activation of genuine multipartite entanglement in continuous-variable systems DOI 10.48550/arxiv.2312.16570 Type Preprint Author Baksová K
-
2022
Title Poster presentation: Quantum Optics 2022, Austria Type Participation in an activity, workshop or similar -
2023
Link
Title Contributed talk: QUIDIQUA, Workshop, Université de Lille Type Participation in an activity, workshop or similar Link Link -
2023
Link
Title Contributed talk: QUANTUMatter 2023, Madrid Type A talk or presentation Link Link -
2023
Link
Title Invited: Generation |Y〉Quantum 2023, Finland Type Participation in an activity, workshop or similar Link Link -
2023
Title Invited Seminar: Tampere University Type A talk or presentation -
2022
Title Invited Internal Seminar: Atominstitut TU Wien Type A talk or presentation -
2023
Link
Title Contributed talk: GnGQC 2023, Technical University of Denmark Type A talk or presentation Link Link -
2023
Link
Title Grundlagen der Quantenmechanik, Internationale Akademie Traunkirchen Type Participation in an activity, workshop or similar Link Link -
2022
Title Invited Seminar: Universität Paderborn Type A talk or presentation -
2023
Link
Title Contributed talk: QUANTUMatter 2023, Madrid Type Participation in an activity, workshop or similar Link Link -
2023
Link
Title Grundlagen der Quantenmechanik, Internationale Akademie Traunkirchen Type A talk or presentation Link Link -
2023
Link
Title Contributed talk: QUIDIQUA, Workshop, Université de Lille Type A talk or presentation Link Link -
2022
Title Poster presentation: Quantum Optics 2022, Austria Type A talk or presentation -
2023
Link
Title Contributed talk: GnGQC 2023, Technical University of Denmark Type Participation in an activity, workshop or similar Link Link
-
2022
Title Invited speaker: CVQC 2022, Copenhagen, Denmark Type Personally asked as a key note speaker to a conference Level of Recognition Continental/International -
2021
Title Invited speaker: ICFO-UNAM-UNIANDES International School on the Frontiers of Light Type Personally asked as a key note speaker to a conference Level of Recognition Continental/International -
2024
Title Invited speaker: DPG Spring Meeting SAMOP, University of Freiburg Type Personally asked as a key note speaker to a conference Level of Recognition Continental/International -
2024
Title Invited speaker: 87th Annual Conference of the DPG and DPG Spring Meeting, Technische Universität Berlin Type Personally asked as a key note speaker to a conference Level of Recognition Continental/International -
2023
Title Invited speaker: PHOTONICS FUTURE Profound | Equal | Inclusive Type Personally asked as a key note speaker to a conference Level of Recognition Continental/International -
2023
Title Appointed as editor: Quantum Journal Type Appointed as the editor/advisor to a journal or book series Level of Recognition Continental/International