• Skip to content (access key 1)
  • Skip to search (access key 7)
FWF — Austrian Science Fund
  • Go to overview page Discover

    • Research Radar
      • Research Radar Archives 1974–1994
    • Discoveries
      • Emmanuelle Charpentier
      • Adrian Constantin
      • Monika Henzinger
      • Ferenc Krausz
      • Wolfgang Lutz
      • Walter Pohl
      • Christa Schleper
      • Elly Tanaka
      • Anton Zeilinger
    • Impact Stories
      • Verena Gassner
      • Wolfgang Lechner
      • Georg Winter
    • scilog Magazine
    • Austrian Science Awards
      • FWF Wittgenstein Awards
      • FWF ASTRA Awards
      • FWF START Awards
      • Award Ceremony
    • excellent=austria
      • Clusters of Excellence
      • Emerging Fields
    • In the Spotlight
      • 40 Years of Erwin Schrödinger Fellowships
      • Quantum Austria
    • Dialogs and Talks
      • think.beyond Summit
    • Knowledge Transfer Events
    • E-Book Library
  • Go to overview page Funding

    • Portfolio
      • excellent=austria
        • Clusters of Excellence
        • Emerging Fields
      • Projects
        • Principal Investigator Projects
        • Principal Investigator Projects International
        • Clinical Research
        • 1000 Ideas
        • Arts-Based Research
        • FWF Wittgenstein Award
      • Careers
        • ESPRIT
        • FWF ASTRA Awards
        • Erwin Schrödinger
        • doc.funds
        • doc.funds.connect
      • Collaborations
        • Specialized Research Groups
        • Special Research Areas
        • Research Groups
        • International – Multilateral Initiatives
        • #ConnectingMinds
      • Communication
        • Top Citizen Science
        • Science Communication
        • Book Publications
        • Digital Publications
        • Open-Access Block Grant
      • Subject-Specific Funding
        • AI Mission Austria
        • Belmont Forum
        • ERA-NET HERA
        • ERA-NET NORFACE
        • ERA-NET QuantERA
        • ERA-NET TRANSCAN
        • Alternative Methods to Animal Testing
        • European Partnership Biodiversa+
        • European Partnership BrainHealth
        • European Partnership ERA4Health
        • European Partnership ERDERA
        • European Partnership EUPAHW
        • European Partnership FutureFoodS
        • European Partnership OHAMR
        • European Partnership PerMed
        • European Partnership Water4All
        • Gottfried and Vera Weiss Award
        • netidee SCIENCE
        • Herzfelder Foundation Projects
        • Quantum Austria
        • Rückenwind Funding Bonus
        • WE&ME Award
        • Zero Emissions Award
      • International Collaborations
        • Belgium/Flanders
        • Germany
        • France
        • Italy/South Tyrol
        • Japan
        • Luxembourg
        • Poland
        • Switzerland
        • Slovenia
        • Taiwan
        • Tyrol–South Tyrol–Trentino
        • Czech Republic
        • Hungary
    • Step by Step
      • Find Funding
      • Submitting Your Application
      • International Peer Review
      • Funding Decisions
      • Carrying out Your Project
      • Closing Your Project
      • Further Information
        • Integrity and Ethics
        • Inclusion
        • Applying from Abroad
        • Personnel Costs
        • PROFI
        • Final Project Reports
        • Final Project Report Survey
    • FAQ
      • Project Phase PROFI
      • Project Phase Ad Personam
      • Expiring Programs
        • Elise Richter and Elise Richter PEEK
        • FWF START Awards
  • Go to overview page About Us

    • Mission Statement
    • FWF Video
    • Values
    • Facts and Figures
    • Annual Report
    • What We Do
      • Research Funding
        • Matching Funds Initiative
      • International Collaborations
      • Studies and Publications
      • Equal Opportunities and Diversity
        • Objectives and Principles
        • Measures
        • Creating Awareness of Bias in the Review Process
        • Terms and Definitions
        • Your Career in Cutting-Edge Research
      • Open Science
        • Open-Access Policy
          • Open-Access Policy for Peer-Reviewed Publications
          • Open-Access Policy for Peer-Reviewed Book Publications
          • Open-Access Policy for Research Data
        • Research Data Management
        • Citizen Science
        • Open Science Infrastructures
        • Open Science Funding
      • Evaluations and Quality Assurance
      • Academic Integrity
      • Science Communication
      • Philanthropy
      • Sustainability
    • History
    • Legal Basis
    • Organization
      • Executive Bodies
        • Executive Board
        • Supervisory Board
        • Assembly of Delegates
        • Scientific Board
        • Juries
      • FWF Office
    • Jobs at FWF
  • Go to overview page News

    • News
    • Press
      • Logos
    • Calendar
      • Post an Event
      • FWF Informational Events
    • Job Openings
      • Enter Job Opening
    • Newsletter
  • Discovering
    what
    matters.

    FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

    SOCIAL MEDIA

    • LinkedIn, external URL, opens in a new window
    • , external URL, opens in a new window
    • Facebook, external URL, opens in a new window
    • Instagram, external URL, opens in a new window
    • YouTube, external URL, opens in a new window

    SCILOG

    • Scilog — The science magazine of the Austrian Science Fund (FWF)
  • elane login, external URL, opens in a new window
  • Scilog external URL, opens in a new window
  • de Wechsle zu Deutsch

  

A Bioreductive Approach to Taxoids Using Recombinant Yeast

A Bioreductive Approach to Taxoids Using Recombinant Yeast

Marko D. Mihovilovic (ORCID: 0000-0002-5438-8368)
  • Grant DOI 10.55776/P15781
  • Funding program Principal Investigator Projects
  • Status ended
  • Start August 1, 2002
  • End July 31, 2006
  • Funding amount € 146,134

Disciplines

Biology (45%); Chemistry (45%); Medical-Theoretical Sciences, Pharmacy (10%)

Keywords

    Biocatalysis, Paclitaxel, Biotransformation, Yeast, Whole-Cell Library Screening

Abstract

The introduction of enzymes as catalysts into synthetic organic chemistry made possible many new highly enantioselective transformations. The employment of microorganisms provides access to enzymes that are difficult to use in an isolated form. In addition, such organisms are self-propagating sources of the desired biocatalyst and all cofactors necessary for the reaction. Therefore, the use of such "biocatalytic reagents" has spread among synthetic organic chemists over the past decade. Since fermentations are generally carried out in aqueous buffers the use of organic solvents and organometallic catalysts in the course of a synthesis is minimized, hence this methodology is of increasing interest for industrial applications. Baker`s yeast (Saccharomyces cerevisiae) has been the first and most popular whole-cell biocatalyst, particularly for asymmetric reductions of carbonyl compounds. Reductions catalyzed by this organism tolerate a large variety of ketones and side-reactions are rarely observed. Based on preliminary results an efficient enantioselective route to novel taxoids is proposed utilizing yeast mediated reductions of keto-lactams as the key synthetic step. Screening of a yeast genome library of recombinant overexpression strains will enable identification of the enzymes involved. Subsequent optimization of the biotransformation will provide access to novel taxoids. Paclitaxel (Taxol) was originally extracted in small quantities from the bark of the Pacific yew tree, and was quickly regarded as a most promising anti cancer agent. Taxol promotes microtuble assembly in vitro at concentrations attainable clinically during prolonged infusions. This upsets the normal dynamic equilibrium between soluble dimeric tubules and the microtubule polymers. Taxol is used in clinical therapy against ovarian, breast, and non-small cell lung cancer and preclinical screens have revealed significant activity against resistant murine melanoma. To overcome some of the major disadvantages of paclitaxel such as low water solubility and in order to increase the biological activity especially against resistant cancer cell lines a series of novel "second generation" taxoids will be prepared utilizing environmentally benign biotransformations by whole-cells. The effects of combining sterically bulky substitutents with polar groups at the C-13 side chain of baccatin III will be studied in detail. The conformational behavior of these novel compounds will provide new insight into the interaction with the receptor region and the rational design of highly active cytotoxines will be supported.

Research institution(s)
  • Technische Universität Wien - 100%

Discovering
what
matters.

Newsletter

FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

Contact

Austrian Science Fund (FWF)
Georg-Coch-Platz 2
(Entrance Wiesingerstraße 4)
1010 Vienna

office(at)fwf.ac.at
+43 1 505 67 40

General information

  • Job Openings
  • Jobs at FWF
  • Press
  • Philanthropy
  • scilog
  • FWF Office
  • Social Media Directory
  • LinkedIn, external URL, opens in a new window
  • , external URL, opens in a new window
  • Facebook, external URL, opens in a new window
  • Instagram, external URL, opens in a new window
  • YouTube, external URL, opens in a new window
  • Cookies
  • Whistleblowing/Complaints Management
  • Accessibility Statement
  • Data Protection
  • Acknowledgements
  • IFG-Form
  • Social Media Directory
  • © Österreichischer Wissenschaftsfonds FWF
© Österreichischer Wissenschaftsfonds FWF