• Skip to content (access key 1)
  • Skip to search (access key 7)
FWF — Austrian Science Fund
  • Go to overview page Discover

    • Research Radar
      • Research Radar Archives 1974–1994
    • Discoveries
      • Emmanuelle Charpentier
      • Adrian Constantin
      • Monika Henzinger
      • Ferenc Krausz
      • Wolfgang Lutz
      • Walter Pohl
      • Christa Schleper
      • Elly Tanaka
      • Anton Zeilinger
    • Impact Stories
      • Verena Gassner
      • Wolfgang Lechner
      • Georg Winter
    • scilog Magazine
    • Austrian Science Awards
      • FWF Wittgenstein Awards
      • FWF ASTRA Awards
      • FWF START Awards
      • Award Ceremony
    • excellent=austria
      • Clusters of Excellence
      • Emerging Fields
    • In the Spotlight
      • 40 Years of Erwin Schrödinger Fellowships
      • Quantum Austria
    • Dialogs and Talks
      • think.beyond Summit
    • Knowledge Transfer Events
    • E-Book Library
  • Go to overview page Funding

    • Portfolio
      • excellent=austria
        • Clusters of Excellence
        • Emerging Fields
      • Projects
        • Principal Investigator Projects
        • Principal Investigator Projects International
        • Clinical Research
        • 1000 Ideas
        • Arts-Based Research
        • FWF Wittgenstein Award
      • Careers
        • ESPRIT
        • FWF ASTRA Awards
        • Erwin Schrödinger
        • doc.funds
        • doc.funds.connect
      • Collaborations
        • Specialized Research Groups
        • Special Research Areas
        • Research Groups
        • International – Multilateral Initiatives
        • #ConnectingMinds
      • Communication
        • Top Citizen Science
        • Science Communication
        • Book Publications
        • Digital Publications
        • Open-Access Block Grant
      • Subject-Specific Funding
        • AI Mission Austria
        • Belmont Forum
        • ERA-NET HERA
        • ERA-NET NORFACE
        • ERA-NET QuantERA
        • ERA-NET TRANSCAN
        • Alternative Methods to Animal Testing
        • European Partnership BE READY
        • European Partnership Biodiversa+
        • European Partnership BrainHealth
        • European Partnership ERA4Health
        • European Partnership ERDERA
        • European Partnership EUPAHW
        • European Partnership FutureFoodS
        • European Partnership OHAMR
        • European Partnership PerMed
        • European Partnership Water4All
        • Gottfried and Vera Weiss Award
        • LUKE – Ukraine
        • netidee SCIENCE
        • Herzfelder Foundation Projects
        • Quantum Austria
        • Rückenwind Funding Bonus
        • WE&ME Award
        • Zero Emissions Award
      • International Collaborations
        • Belgium/Flanders
        • Germany
        • France
        • Italy/South Tyrol
        • Japan
        • Korea
        • Luxembourg
        • Poland
        • Switzerland
        • Slovenia
        • Taiwan
        • Tyrol–South Tyrol–Trentino
        • Czech Republic
        • Hungary
    • Step by Step
      • Find Funding
      • Submitting Your Application
      • International Peer Review
      • Funding Decisions
      • Carrying out Your Project
      • Closing Your Project
      • Further Information
        • Integrity and Ethics
        • Inclusion
        • Applying from Abroad
        • Personnel Costs
        • PROFI
        • Final Project Reports
        • Final Project Report Survey
    • FAQ
      • Project Phase PROFI
      • Project Phase Ad Personam
      • Expiring Programs
        • Elise Richter and Elise Richter PEEK
        • FWF START Awards
  • Go to overview page About Us

    • Mission Statement
    • FWF Video
    • Values
    • Facts and Figures
    • Annual Report
    • What We Do
      • Research Funding
        • Matching Funds Initiative
      • International Collaborations
      • Studies and Publications
      • Equal Opportunities and Diversity
        • Objectives and Principles
        • Measures
        • Creating Awareness of Bias in the Review Process
        • Terms and Definitions
        • Your Career in Cutting-Edge Research
      • Open Science
        • Open-Access Policy
          • Open-Access Policy for Peer-Reviewed Publications
          • Open-Access Policy for Peer-Reviewed Book Publications
          • Open-Access Policy for Research Data
        • Research Data Management
        • Citizen Science
        • Open Science Infrastructures
        • Open Science Funding
      • Evaluations and Quality Assurance
      • Academic Integrity
      • Science Communication
      • Philanthropy
      • Sustainability
    • History
    • Legal Basis
    • Organization
      • Executive Bodies
        • Executive Board
        • Supervisory Board
        • Assembly of Delegates
        • Scientific Board
        • Juries
      • FWF Office
    • Jobs at FWF
  • Go to overview page News

    • News
    • Press
      • Logos
    • Calendar
      • Post an Event
      • FWF Informational Events
    • Job Openings
      • Enter Job Opening
    • Newsletter
  • Discovering
    what
    matters.

    FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

    SOCIAL MEDIA

    • LinkedIn, external URL, opens in a new window
    • , external URL, opens in a new window
    • Facebook, external URL, opens in a new window
    • Instagram, external URL, opens in a new window
    • YouTube, external URL, opens in a new window

    SCILOG

    • Scilog — The science magazine of the Austrian Science Fund (FWF)
  • elane login, external URL, opens in a new window
  • Scilog external URL, opens in a new window
  • de Wechsle zu Deutsch

  

Development of an Augmented-Reality Dynamic Spatial Test

Development of an Augmented-Reality Dynamic Spatial Test

Judith Glück (ORCID: 0000-0001-8923-9306)
  • Grant DOI 10.55776/P19265
  • Funding program Principal Investigator Projects
  • Status ended
  • Start November 1, 2006
  • End May 31, 2011
  • Funding amount € 369,486

Disciplines

Computer Sciences (40%); Psychology (60%)

Keywords

    Spatial Abilities, Item-Response-Models, Dynamic Testin, Training, Augmented Reality

Abstract Final report

In the proposed project we intend to develop a new type of test for the assessment of spatial abilities that differs from conventional spatial ability tests in several aspects. First, traditional spatial ability tests (paper-pencil as well as on-screen computer versions) assess 3dimensional spatial abilities with 2dimensional means. The new test will measure the ability to visualize and mentally manipulate 3dimensional objects in actual 3dimensional space, and should thus have a higher ecological validity than previous spatial ability tests. This will be possible through use of the Augmented Reality tool Construct3D, which allows for projecting virtual 3dimensional objects into real space where they can be seen and manipulated by means of special glasses and input devices. Furthermore, the planned test will be a dynamic learning test; thus, other than conventional tests, it does not only measure a person`s current status, but also his or her learning potential. Performance in conventional tests is generally, and particularly when spatial abilities are concerned, significantly dependent on factors such as test experience or experience with similar tasks and materials. Gender differences, which are still frequently found in spatial tests, can partly be attributed to these experience-based factors. Often, such differences can be reduced or eliminated through a relatively short training, sometimes even through a simple re-take of the test. With a dynamic learning test (usually consisting of a pretest, a training phase, and a posttest) the influence of short-term learning experiences on test performance can be assessed, which may yield higher internal consistency and predictive power of the test scores. The new item material will assess the mental manipulation (rotation, combination, intersection, etc.) of 3dimensional objects. Stimuli and instructions are presented sequentially. Hence, in contrast to most other tests, participants need to actually encode and manipulate mental representations of the spatial objects. Thereby, the range of possible strategies (e.g., comparison of single features and elimination of possible answers) is reduced. In order to guarantee homogeneity of the testing material and to avoid problems such as ceiling effects, item- response-models will be employed for the development of test items as well as for the measurement of change in performance.

In the proposed project we intend to develop a new type of test for the assessment of spatial abilities that differs from conventional spatial ability tests in several aspects. First, traditional spatial ability tests (paper-pencil as well as on-screen computer versions) assess 3dimensional spatial abilities with 2dimensional means. The new test will measure the ability to visualize and mentally manipulate 3dimensional objects in actual 3dimensional space, and should thus have a higher ecological validity than previous spatial ability tests. This will be possible through use of the Augmented Reality tool Construct3D, which allows for projecting virtual 3dimensional objects into real space where they can be seen and manipulated by means of special glasses and input devices. Furthermore, the planned test will be a dynamic learning test; thus, other than conventional tests, it does not only measure a person`s current status, but also his or her learning potential. Performance in conventional tests is generally, and particularly when spatial abilities are concerned, significantly dependent on factors such as test experience or experience with similar tasks and materials. Gender differences, which are still frequently found in spatial tests, can partly be attributed to these experience-based factors. Often, such differences can be reduced or eliminated through a relatively short training, sometimes even through a simple re-take of the test. With a dynamic learning test (usually consisting of a pretest, a training phase, and a posttest) the influence of short-term learning experiences on test performance can be assessed, which may yield higher internal consistency and predictive power of the test scores. The new item material will assess the mental manipulation (rotation, combination, intersection, etc.) of 3dimensional objects. Stimuli and instructions are presented sequentially. Hence, in contrast to most other tests, participants need to actually encode and manipulate mental representations of the spatial objects. Thereby, the range of possible strategies (e.g., comparison of single features and elimination of possible answers) is reduced. In order to guarantee homogeneity of the testing material and to avoid problems such as ceiling effects, item- response-models will be employed for the development of test items as well as for the measurement of change in performance.

Research institution(s)
  • Universität Klagenfurt - 50%
  • Technische Universität Wien - 50%
Project participants
  • Hannes Kaufmann, Technische Universität Wien , associated research partner

Research Output

  • 22 Citations
  • 3 Publications
Publications
  • 2011
    Title Wireless Displays in Educational Augmented Reality Applications
    DOI 10.1007/978-1-4614-0064-6_6
    Type Book Chapter
    Author Kaufmann H
    Publisher Springer Nature
    Pages 157-175
  • 2008
    Title A rigid-body target design methodology for optical pose-tracking systems
    DOI 10.1145/1450579.1450594
    Type Conference Proceeding Abstract
    Author Pintaric T
    Pages 73-76
  • 2008
    Title SqueezeOrb
    DOI 10.1145/1450579.1450647
    Type Conference Proceeding Abstract
    Author Pintaric T
    Pages 269-270

Discovering
what
matters.

Newsletter

FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

Contact

Austrian Science Fund (FWF)
Georg-Coch-Platz 2
(Entrance Wiesingerstraße 4)
1010 Vienna

office(at)fwf.ac.at
+43 1 505 67 40

General information

  • Job Openings
  • Jobs at FWF
  • Press
  • Philanthropy
  • scilog
  • FWF Office
  • Social Media Directory
  • LinkedIn, external URL, opens in a new window
  • , external URL, opens in a new window
  • Facebook, external URL, opens in a new window
  • Instagram, external URL, opens in a new window
  • YouTube, external URL, opens in a new window
  • Cookies
  • Whistleblowing/Complaints Management
  • Accessibility Statement
  • Data Protection
  • Acknowledgements
  • IFG-Form
  • Social Media Directory
  • © Österreichischer Wissenschaftsfonds FWF
© Österreichischer Wissenschaftsfonds FWF