• Skip to content (access key 1)
  • Skip to search (access key 7)
FWF — Austrian Science Fund
  • Go to overview page Discover

    • Research Radar
      • Research Radar Archives 1974–1994
    • Discoveries
      • Emmanuelle Charpentier
      • Adrian Constantin
      • Monika Henzinger
      • Ferenc Krausz
      • Wolfgang Lutz
      • Walter Pohl
      • Christa Schleper
      • Elly Tanaka
      • Anton Zeilinger
    • Impact Stories
      • Verena Gassner
      • Wolfgang Lechner
      • Georg Winter
    • scilog Magazine
    • Austrian Science Awards
      • FWF Wittgenstein Awards
      • FWF ASTRA Awards
      • FWF START Awards
      • Award Ceremony
    • excellent=austria
      • Clusters of Excellence
      • Emerging Fields
    • In the Spotlight
      • 40 Years of Erwin Schrödinger Fellowships
      • Quantum Austria
    • Dialogs and Talks
      • think.beyond Summit
    • Knowledge Transfer Events
    • E-Book Library
  • Go to overview page Funding

    • Portfolio
      • excellent=austria
        • Clusters of Excellence
        • Emerging Fields
      • Projects
        • Principal Investigator Projects
        • Principal Investigator Projects International
        • Clinical Research
        • 1000 Ideas
        • Arts-Based Research
        • FWF Wittgenstein Award
      • Careers
        • ESPRIT
        • FWF ASTRA Awards
        • Erwin Schrödinger
        • doc.funds
        • doc.funds.connect
      • Collaborations
        • Specialized Research Groups
        • Special Research Areas
        • Research Groups
        • International – Multilateral Initiatives
        • #ConnectingMinds
      • Communication
        • Top Citizen Science
        • Science Communication
        • Book Publications
        • Digital Publications
        • Open-Access Block Grant
      • Subject-Specific Funding
        • AI Mission Austria
        • Belmont Forum
        • ERA-NET HERA
        • ERA-NET NORFACE
        • ERA-NET QuantERA
        • ERA-NET TRANSCAN
        • Alternative Methods to Animal Testing
        • European Partnership Biodiversa+
        • European Partnership BrainHealth
        • European Partnership ERA4Health
        • European Partnership ERDERA
        • European Partnership EUPAHW
        • European Partnership FutureFoodS
        • European Partnership OHAMR
        • European Partnership PerMed
        • European Partnership Water4All
        • Gottfried and Vera Weiss Award
        • netidee SCIENCE
        • Herzfelder Foundation Projects
        • Quantum Austria
        • Rückenwind Funding Bonus
        • WE&ME Award
        • Zero Emissions Award
      • International Collaborations
        • Belgium/Flanders
        • Germany
        • France
        • Italy/South Tyrol
        • Japan
        • Luxembourg
        • Poland
        • Switzerland
        • Slovenia
        • Taiwan
        • Tyrol–South Tyrol–Trentino
        • Czech Republic
        • Hungary
    • Step by Step
      • Find Funding
      • Submitting Your Application
      • International Peer Review
      • Funding Decisions
      • Carrying out Your Project
      • Closing Your Project
      • Further Information
        • Integrity and Ethics
        • Inclusion
        • Applying from Abroad
        • Personnel Costs
        • PROFI
        • Final Project Reports
        • Final Project Report Survey
    • FAQ
      • Project Phase PROFI
      • Project Phase Ad Personam
      • Expiring Programs
        • Elise Richter and Elise Richter PEEK
        • FWF START Awards
  • Go to overview page About Us

    • Mission Statement
    • FWF Video
    • Values
    • Facts and Figures
    • Annual Report
    • What We Do
      • Research Funding
        • Matching Funds Initiative
      • International Collaborations
      • Studies and Publications
      • Equal Opportunities and Diversity
        • Objectives and Principles
        • Measures
        • Creating Awareness of Bias in the Review Process
        • Terms and Definitions
        • Your Career in Cutting-Edge Research
      • Open Science
        • Open-Access Policy
          • Open-Access Policy for Peer-Reviewed Publications
          • Open-Access Policy for Peer-Reviewed Book Publications
          • Open-Access Policy for Research Data
        • Research Data Management
        • Citizen Science
        • Open Science Infrastructures
        • Open Science Funding
      • Evaluations and Quality Assurance
      • Academic Integrity
      • Science Communication
      • Philanthropy
      • Sustainability
    • History
    • Legal Basis
    • Organization
      • Executive Bodies
        • Executive Board
        • Supervisory Board
        • Assembly of Delegates
        • Scientific Board
        • Juries
      • FWF Office
    • Jobs at FWF
  • Go to overview page News

    • News
    • Press
      • Logos
    • Calendar
      • Post an Event
      • FWF Informational Events
    • Job Openings
      • Enter Job Opening
    • Newsletter
  • Discovering
    what
    matters.

    FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

    SOCIAL MEDIA

    • LinkedIn, external URL, opens in a new window
    • , external URL, opens in a new window
    • Facebook, external URL, opens in a new window
    • Instagram, external URL, opens in a new window
    • YouTube, external URL, opens in a new window

    SCILOG

    • Scilog — The science magazine of the Austrian Science Fund (FWF)
  • elane login, external URL, opens in a new window
  • Scilog external URL, opens in a new window
  • de Wechsle zu Deutsch

  

Polynomial functions in commutative ring theory

Polynomial functions in commutative ring theory

Sophie Frisch (ORCID: 0000-0001-6319-0436)
  • Grant DOI 10.55776/P35788
  • Funding program Principal Investigator Projects
  • Status ongoing
  • Start March 1, 2023
  • End February 28, 2027
  • Funding amount € 411,228

Disciplines

Mathematics (100%)

Keywords

    Polynomial Functions, Commutative Rings, Integer-Valued Polynomials, Finite Rings, Rings Of Functions, Polynomial Permutations

Abstract

Our project concerns commutative ring theory, with connections to topology, arithmetic, group theory and algebraic K-theory. Concerning topological methods in commutative ring theory, we plan to characterize non- Archimedean uniformities by a list of equivalent axioms, and, with the added insight, to investigate completions of rings with respect to I-adic topologies, and their applications to Skolem properties and the prime spectrum of rings of functions. Concerning the arithmetic of Prüfer and Krull rings, we will study questions on non-unique factorization of elements into irreducibles in non-Noetherian Prüfer rings; for instance, the existence or non-existence of prime elements and absolutely irreducible elements, and also, divisor theories and divisor homomorphisms. With the help of group theory we will study groups of polynomial permutations over rings of dual numbers over finite rings: their Sylow groups, their normal subgroups, and the projective limit of systems of such groups. In algebraic K-theory, eventually we want to determine how far matrices with determinant 1 over Int(Z) are away from being products of elementary matrices, and to study the structure of the special linear group of 2x2-matrices over Int(Z), where Int(Z) is the ring of integer-valued polynomials on the ring of integers. As a first step in this direction, we propose to show that the stable rank of Int(Z) is 2.

Research institution(s)
  • Technische Universität Graz - 100%
Project participants
  • Laura Cossu, Università degli Studi di Cagliari , national collaboration partner
  • Roswitha Rissner, Universität Klagenfurt , national collaboration partner
International project participants
  • Jean-Luc Chabert, Université de Picardie Jules Verne - France
  • Carmelo Antonio Finocchiaro, University of Catania - Italy
  • Laura Cossu, Università degli Studi di Cagliari - Italy
  • Giulio Peruginelli, Università degli studi di Padova - Italy
  • Bruce Olberding, New Mexico State University - USA
  • Alan Loper, Ohio State University - USA
  • Irena Swanson, Purdue University - USA
  • Nicholas Werner, SUNY College at Old Westbury - USA

Research Output

  • 5 Citations
  • 3 Publications
Publications
  • 2025
    Title On the structures of a monoid of triangular vector-permutation polynomials, its group of units and its induced group of permutations
    DOI 10.1016/j.jpaa.2024.107789
    Type Journal Article
    Author Al-Maktry A
    Journal Journal of Pure and Applied Algebra
    Pages 107789
    Link Publication
  • 2023
    Title Integer-valued polynomials on valuation rings of global fields with prescribed lengths of factorizations
    DOI 10.1007/s00605-023-01895-2
    Type Journal Article
    Author Fadinger-Held V
    Journal Monatshefte für Mathematik
    Pages 773-789
    Link Publication
  • 2023
    Title Prime ideals in infinite products of commutative rings
    DOI 10.1142/s0219199723500451
    Type Journal Article
    Author Finocchiaro C
    Journal Communications in Contemporary Mathematics
    Pages 2350045

Discovering
what
matters.

Newsletter

FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

Contact

Austrian Science Fund (FWF)
Georg-Coch-Platz 2
(Entrance Wiesingerstraße 4)
1010 Vienna

office(at)fwf.ac.at
+43 1 505 67 40

General information

  • Job Openings
  • Jobs at FWF
  • Press
  • Philanthropy
  • scilog
  • FWF Office
  • Social Media Directory
  • LinkedIn, external URL, opens in a new window
  • , external URL, opens in a new window
  • Facebook, external URL, opens in a new window
  • Instagram, external URL, opens in a new window
  • YouTube, external URL, opens in a new window
  • Cookies
  • Whistleblowing/Complaints Management
  • Accessibility Statement
  • Data Protection
  • Acknowledgements
  • IFG-Form
  • Social Media Directory
  • © Österreichischer Wissenschaftsfonds FWF
© Österreichischer Wissenschaftsfonds FWF