Quantum Frequency Conversion for Ion-Trap Quantum Networks
Quantum Frequency Conversion for Ion-Trap Quantum Networks
Disciplines
Physics, Astronomy (100%)
Keywords
-
Quantum information,
Entanglement,
Quantum networks,
Photon,
Trapped ions,
Quantum optics
I propose to study a technique to convert the frequencies of photons, that are emitted by and entangled with trapped atomic-ions, to values that are optimal for quantum networking. The values include those directly accepted by quantum dots, diamond colour centres and neutral atoms, and those suitable for ultra-long-distance transmission through optical fibre and the atmosphere. This quantum frequency conversion technique could open up intriguing new research possibilities, including the opportunity to study hybrid quantum systems and to realise large-scale distributed quantum networks. Such networks would have broad and far-reaching implications for many fields of science, in particular for quantum metrology, communication and computation. I aim to experimentally demonstrate the frequency-conversion technique for photons entangled with trapped ions and to determine its potential to enable quantum networking. My proposed team and I will begin by building the sophisticated experimental systems necessary for the first studies of the underlying processes, with trapped-ions. We will focus on pursuing photon conversion to the prime telecom wavelength of 1550 nm, which would have the greatest impact on our field and the international research community. The first experimental goal will be to convert pure-state photons emitted by an ion, i.e. those not entangled to the ion, and study their temporal and spectral properties. The next goal will be to pursue the conversion of ion-photon entangled states to 1550 nm. This would be a significant breakthrough, which we will use to study the dynamics of ion-photon entanglement distributed over unprecedented distances of many tens of kilometers. In a later stage we aim to observe non-classical interference between frequency-converted photons emitted by ions in traps separated by more than 1 km, which represents a strict test on the potential for frequency-converted photons to enable quantum networking. The awarding of this project will result in the creation of a new research program in Innsbruck, that combines the fields of trapped-ions and non-linear photonics, for the purpose of building quantum networks.
Das erste Kernziel dieses Projekts war eine optische Schnittstelle zu entwickeln, die es ermöglicht, die Quantenzustände gefangener Atome mit Photonen zu verbinden, die die optimale Wellenlänge für die Übertragung über große Entfernungen durch Glasfaser (das Telekommunikations-C-Band) haben. Das zweite Kernziel war diese Fähigkeit zu nutzen, um die Verschränkung zwischen Materie und Licht über dutzende Kilometer von optischen Fasern zu beobachten: Größenordnungen, die über den bisherigen Stand der Technik hinausgehen. Beide Ziele wurden erreicht. Wir haben eine nichtlineare optische Schnittstelle entwickelt, die die Wellenlänge von Photonen, die von eingefangenen ionisierten Kalziumatomen emittiert und mit ihnen verschränkt werden, in das Telekommunikations-C-Band umwandeln kann. Anschließend verwendeten wir das Gerät, um eine Verschränkung zwischen einem Kalziumatom und einem Photon festzustellen, das durch eine 101 km lange gewickelte optische Faser gereist war. Darüber hinaus haben wir diese neuen Fähigkeiten genutzt, um die Funktionalität eines Quanten-Repeater-Knotens zu demonstrieren: einem Gerät, das die Verteilung von Quanteninformation über beliebige Entfernungen in zukünftigen Quantennetzwerken ermöglichen soll. Schließlich ist es uns in einer Forschungskooperation gelungen, zwei Atome miteinander zu verschränken: Ein Atom in unserem Labor mit einem Atom in einem anderen Gebäude im Abstand von 210 Metern auf dem Technik-Campus der Universität Innsbruck. Diese Ergebnisse ebnen den Weg für den Aufbau von Quantennetzwerken gefangener Atome im interstädtischen Maßstab, die eine neue Plattform für Wissenschaft und Technologie darstellen. Von besonderem Interesse ist, dass die Atome als präzise Uhren und Sensoren dienen können, was die Möglichkeit eröffnet, leistungsstarke verteilte Sensor- und Zeitmessnetzwerke aufzubauen.
- Universität Innsbruck - 100%
Research Output
- 900 Citations
- 29 Publications
- 1 Methods & Materials
- 2 Datasets & models
- 2 Scientific Awards
- 5 Fundings
-
2024
Title Multimode Ion-Photon Entanglement over 101 Kilometers DOI 10.1103/prxquantum.5.020308 Type Journal Article Author Canteri M Journal PRX Quantum -
2019
Title Light-matter entanglement over 50 km of optical fibre DOI 10.48550/arxiv.1901.06317 Type Preprint Author Krutyanskiy V -
2018
Title Observation of Entangled States of a Fully Controlled 20-Qubit System DOI 10.1103/physrevx.8.021012 Type Journal Article Author Friis N Journal Physical Review X Pages 021012 Link Publication -
2016
Title Efficient tomography of a quantum many-body system DOI 10.48550/arxiv.1612.08000 Type Preprint Author Lanyon B -
2021
Title Towards a deterministic interface between trapped-ion qubits and travelling photons DOI 10.48550/arxiv.2105.02121 Type Preprint Author Schupp J -
2023
Title Quantum Repeater Goes the Distance DOI 10.1103/physics.16.84 Type Journal Article Author Hajdušek M Journal Physics Pages 84 Link Publication -
2023
Title Telecom-Wavelength Quantum Repeater Node Based on a Trapped-Ion Processor DOI 10.1103/physrevlett.130.213601 Type Journal Article Author Krutyanskiy V Journal Physical Review Letters Pages 213601 Link Publication -
2021
Title Interface between Trapped-Ion Qubits and Traveling Photons with Close-to-Optimal Efficiency DOI 10.1103/prxquantum.2.020331 Type Journal Article Author Schupp J Journal PRX Quantum Pages 020331 Link Publication -
2023
Title Multimode ion-photon entanglement over 101 kilometers of optical fiber DOI 10.48550/arxiv.2308.08891 Type Preprint Author Krutyanskiy V -
2022
Title A Photonic Quantum Interface Between Trapped Ions and the Telecom C Band Type PhD Thesis Author Martin Meraner Link Publication -
2020
Title Indistinguishable photons from a trapped-ion quantum network node DOI 10.1103/physreva.102.052614 Type Journal Article Author Meraner M Journal Physical Review A Pages 052614 Link Publication -
2019
Title Light-matter entanglement over 50 km of optical fibre DOI 10.1038/s41534-019-0186-3 Type Journal Article Author Krutyanskiy V Journal npj Quantum Information Pages 72 Link Publication -
2019
Title Indistinguishable photons from a trapped-ion quantum network node DOI 10.48550/arxiv.1912.09259 Type Preprint Author Meraner M -
2021
Title Interface between trapped-ion qubits and travelling phoyons with close-to-optimal efficiency Type PhD Thesis Author Josef Schupp Link Publication -
2023
Title A telecom-wavelength quantum repeater node based on a trapped-ion processor DOI 10.5281/zenodo.7781416 Type Journal Article Author Marco C Link Publication -
2023
Title Entanglement of Trapped-Ion Qubits Separated by 230Meters. DOI 10.1103/physrevlett.130.050803 Type Journal Article Author Galli M Journal Physical review letters Pages 050803 -
2023
Title A telecom-wavelength quantum repeater node based on a trapped-ion processor DOI 10.5281/zenodo.7781415 Type Journal Article Author Marco C Link Publication -
2022
Title Entanglement of trapped-ion qubits separated by 230 meters DOI 10.5281/zenodo.7031042 Type Journal Article Author Galli M Link Publication -
2022
Title Entanglement of trapped-ion qubits separated by 230 meters DOI 10.5281/zenodo.7031041 Type Journal Article Author Galli M Link Publication -
2023
Title Towards engineered quantum many-body systems made of individual atoms and photons Type Postdoctoral Thesis Author Ben Lanyon -
2022
Title A telecom-wavelength quantum repeater node based on a trapped-ion processor DOI 10.48550/arxiv.2210.05418 Type Preprint Author Krutyanskiy V -
2022
Title Entanglement of trapped-ion qubits separated by 230 meters DOI 10.48550/arxiv.2208.14907 Type Preprint Author Krutyanskiy V -
2017
Title Deterministic quantum state transfer between remote qubits in cavities DOI 10.48550/arxiv.1704.06233 Type Preprint Author Vogell B -
2017
Title Quantum repeaters based on trapped ions with decoherence-free subspace encoding DOI 10.1088/2058-9565/aa7983 Type Journal Article Author Zwerger M Journal Quantum Science and Technology Pages 044001 Link Publication -
2017
Title Efficient polarisation-preserving frequency conversion from a trapped-ion-compatible wavelength to the telecom C band DOI 10.48550/arxiv.1709.02413 Type Preprint Author Krutyanskiy V -
2017
Title Observation of Entangled States of a Fully Controlled 20-Qubit System DOI 10.48550/arxiv.1711.11092 Type Preprint Author Friis N -
2017
Title Polarisation-preserving photon frequency conversion from a trapped-ion-compatible wavelength to the telecom C-band DOI 10.1007/s00340-017-6806-8 Type Journal Article Author Krutyanskiy V Journal Applied Physics B Pages 228 Link Publication -
2017
Title Deterministic quantum state transfer between remote qubits in cavities DOI 10.1088/2058-9565/aa868b Type Journal Article Author Vogell B Journal Quantum Science and Technology Pages 045003 Link Publication -
2017
Title Efficient tomography of a quantum many-body system DOI 10.1038/nphys4244 Type Journal Article Author Lanyon B Journal Nature Physics Pages 1158-1162
-
2019
Title Polarization-preserving single photon frequency converter Type Improvements to research infrastructure Public Access
-
2021
Link
Title Indistinguishable photons from a trapped-ion quantum network node DOI 10.5281/zenodo.4492160 Type Database/Collection of data Public Access Link Link -
2021
Link
Title Indistinguishable photons from a trapped-ion quantum network node DOI 10.5281/zenodo.4492161 Type Database/Collection of data Public Access Link Link
-
2019
Title CIFAR fellow - Quantum Information Science Type Awarded honorary membership, or a fellowship, of a learned society Level of Recognition Continental/International -
2015
Title List of conference invitations as speaker Type Personally asked as a key note speaker to a conference Level of Recognition Continental/International
-
2023
Title QCI: Proof of Concept - Secure Connectivity Austria (QCI-CAT & FFG joint) Type Capital/infrastructure (including equipment) Start of Funding 2023 -
2021
Title Fellow in the CIFAR program in Quantum Information Science Type Fellowship Start of Funding 2021 -
2022
Title Quantum Internet Alliance - Phase 1 Type Research grant (including intramural programme) Start of Funding 2022 -
2018
Title QIA (FETFLAG-03-2018 - FET Flagship on Quantum Technologies) Type Research grant (including intramural programme) Start of Funding 2018 -
2021
Title A quantum many-body interface between atoms and photons Type Research grant (including intramural programme) Start of Funding 2021