• Skip to content (access key 1)
  • Skip to search (access key 7)
FWF — Austrian Science Fund
  • Go to overview page Discover

    • Research Radar
      • Research Radar Archives 1974–1994
    • Discoveries
      • Emmanuelle Charpentier
      • Adrian Constantin
      • Monika Henzinger
      • Ferenc Krausz
      • Wolfgang Lutz
      • Walter Pohl
      • Christa Schleper
      • Elly Tanaka
      • Anton Zeilinger
    • Impact Stories
      • Verena Gassner
      • Wolfgang Lechner
      • Georg Winter
    • scilog Magazine
    • Austrian Science Awards
      • FWF Wittgenstein Awards
      • FWF ASTRA Awards
      • FWF START Awards
      • Award Ceremony
    • excellent=austria
      • Clusters of Excellence
      • Emerging Fields
    • In the Spotlight
      • 40 Years of Erwin Schrödinger Fellowships
      • Quantum Austria
    • Dialogs and Talks
      • think.beyond Summit
    • Knowledge Transfer Events
    • E-Book Library
  • Go to overview page Funding

    • Portfolio
      • excellent=austria
        • Clusters of Excellence
        • Emerging Fields
      • Projects
        • Principal Investigator Projects
        • Principal Investigator Projects International
        • Clinical Research
        • 1000 Ideas
        • Arts-Based Research
        • FWF Wittgenstein Award
      • Careers
        • ESPRIT
        • FWF ASTRA Awards
        • Erwin Schrödinger
        • doc.funds
        • doc.funds.connect
      • Collaborations
        • Specialized Research Groups
        • Special Research Areas
        • Research Groups
        • International – Multilateral Initiatives
        • #ConnectingMinds
      • Communication
        • Top Citizen Science
        • Science Communication
        • Book Publications
        • Digital Publications
        • Open-Access Block Grant
      • Subject-Specific Funding
        • AI Mission Austria
        • Belmont Forum
        • ERA-NET HERA
        • ERA-NET NORFACE
        • ERA-NET QuantERA
        • ERA-NET TRANSCAN
        • Alternative Methods to Animal Testing
        • European Partnership Biodiversa+
        • European Partnership BrainHealth
        • European Partnership ERA4Health
        • European Partnership ERDERA
        • European Partnership EUPAHW
        • European Partnership FutureFoodS
        • European Partnership OHAMR
        • European Partnership PerMed
        • European Partnership Water4All
        • Gottfried and Vera Weiss Award
        • netidee SCIENCE
        • Herzfelder Foundation Projects
        • Quantum Austria
        • Rückenwind Funding Bonus
        • WE&ME Award
        • Zero Emissions Award
      • International Collaborations
        • Belgium/Flanders
        • Germany
        • France
        • Italy/South Tyrol
        • Japan
        • Luxembourg
        • Poland
        • Switzerland
        • Slovenia
        • Taiwan
        • Tyrol–South Tyrol–Trentino
        • Czech Republic
        • Hungary
    • Step by Step
      • Find Funding
      • Submitting Your Application
      • International Peer Review
      • Funding Decisions
      • Carrying out Your Project
      • Closing Your Project
      • Further Information
        • Integrity and Ethics
        • Inclusion
        • Applying from Abroad
        • Personnel Costs
        • PROFI
        • Final Project Reports
        • Final Project Report Survey
    • FAQ
      • Project Phase PROFI
      • Project Phase Ad Personam
      • Expiring Programs
        • Elise Richter and Elise Richter PEEK
        • FWF START Awards
  • Go to overview page About Us

    • Mission Statement
    • FWF Video
    • Values
    • Facts and Figures
    • Annual Report
    • What We Do
      • Research Funding
        • Matching Funds Initiative
      • International Collaborations
      • Studies and Publications
      • Equal Opportunities and Diversity
        • Objectives and Principles
        • Measures
        • Creating Awareness of Bias in the Review Process
        • Terms and Definitions
        • Your Career in Cutting-Edge Research
      • Open Science
        • Open-Access Policy
          • Open-Access Policy for Peer-Reviewed Publications
          • Open-Access Policy for Peer-Reviewed Book Publications
          • Open-Access Policy for Research Data
        • Research Data Management
        • Citizen Science
        • Open Science Infrastructures
        • Open Science Funding
      • Evaluations and Quality Assurance
      • Academic Integrity
      • Science Communication
      • Philanthropy
      • Sustainability
    • History
    • Legal Basis
    • Organization
      • Executive Bodies
        • Executive Board
        • Supervisory Board
        • Assembly of Delegates
        • Scientific Board
        • Juries
      • FWF Office
    • Jobs at FWF
  • Go to overview page News

    • News
    • Press
      • Logos
    • Calendar
      • Post an Event
      • FWF Informational Events
    • Job Openings
      • Enter Job Opening
    • Newsletter
  • Discovering
    what
    matters.

    FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

    SOCIAL MEDIA

    • LinkedIn, external URL, opens in a new window
    • , external URL, opens in a new window
    • Facebook, external URL, opens in a new window
    • Instagram, external URL, opens in a new window
    • YouTube, external URL, opens in a new window

    SCILOG

    • Scilog — The science magazine of the Austrian Science Fund (FWF)
  • elane login, external URL, opens in a new window
  • Scilog external URL, opens in a new window
  • de Wechsle zu Deutsch

  

Quantum Frequency Conversion for Ion-Trap Quantum Networks

Quantum Frequency Conversion for Ion-Trap Quantum Networks

Benjamin Lanyon (ORCID: 0000-0002-7379-4572)
  • Grant DOI 10.55776/Y849
  • Funding program FWF START Award
  • Status ended
  • Start September 14, 2015
  • End March 13, 2024
  • Funding amount € 1,160,759

Disciplines

Physics, Astronomy (100%)

Keywords

    Quantum information, Entanglement, Quantum networks, Photon, Trapped ions, Quantum optics

Abstract Final report

I propose to study a technique to convert the frequencies of photons, that are emitted by and entangled with trapped atomic-ions, to values that are optimal for quantum networking. The values include those directly accepted by quantum dots, diamond colour centres and neutral atoms, and those suitable for ultra-long-distance transmission through optical fibre and the atmosphere. This quantum frequency conversion technique could open up intriguing new research possibilities, including the opportunity to study hybrid quantum systems and to realise large-scale distributed quantum networks. Such networks would have broad and far-reaching implications for many fields of science, in particular for quantum metrology, communication and computation. I aim to experimentally demonstrate the frequency-conversion technique for photons entangled with trapped ions and to determine its potential to enable quantum networking. My proposed team and I will begin by building the sophisticated experimental systems necessary for the first studies of the underlying processes, with trapped-ions. We will focus on pursuing photon conversion to the prime telecom wavelength of 1550 nm, which would have the greatest impact on our field and the international research community. The first experimental goal will be to convert pure-state photons emitted by an ion, i.e. those not entangled to the ion, and study their temporal and spectral properties. The next goal will be to pursue the conversion of ion-photon entangled states to 1550 nm. This would be a significant breakthrough, which we will use to study the dynamics of ion-photon entanglement distributed over unprecedented distances of many tens of kilometers. In a later stage we aim to observe non-classical interference between frequency-converted photons emitted by ions in traps separated by more than 1 km, which represents a strict test on the potential for frequency-converted photons to enable quantum networking. The awarding of this project will result in the creation of a new research program in Innsbruck, that combines the fields of trapped-ions and non-linear photonics, for the purpose of building quantum networks.

Das erste Kernziel dieses Projekts war eine optische Schnittstelle zu entwickeln, die es ermöglicht, die Quantenzustände gefangener Atome mit Photonen zu verbinden, die die optimale Wellenlänge für die Übertragung über große Entfernungen durch Glasfaser (das Telekommunikations-C-Band) haben. Das zweite Kernziel war diese Fähigkeit zu nutzen, um die Verschränkung zwischen Materie und Licht über dutzende Kilometer von optischen Fasern zu beobachten: Größenordnungen, die über den bisherigen Stand der Technik hinausgehen. Beide Ziele wurden erreicht. Wir haben eine nichtlineare optische Schnittstelle entwickelt, die die Wellenlänge von Photonen, die von eingefangenen ionisierten Kalziumatomen emittiert und mit ihnen verschränkt werden, in das Telekommunikations-C-Band umwandeln kann. Anschließend verwendeten wir das Gerät, um eine Verschränkung zwischen einem Kalziumatom und einem Photon festzustellen, das durch eine 101 km lange gewickelte optische Faser gereist war. Darüber hinaus haben wir diese neuen Fähigkeiten genutzt, um die Funktionalität eines Quanten-Repeater-Knotens zu demonstrieren: einem Gerät, das die Verteilung von Quanteninformation über beliebige Entfernungen in zukünftigen Quantennetzwerken ermöglichen soll. Schließlich ist es uns in einer Forschungskooperation gelungen, zwei Atome miteinander zu verschränken: Ein Atom in unserem Labor mit einem Atom in einem anderen Gebäude im Abstand von 210 Metern auf dem Technik-Campus der Universität Innsbruck. Diese Ergebnisse ebnen den Weg für den Aufbau von Quantennetzwerken gefangener Atome im interstädtischen Maßstab, die eine neue Plattform für Wissenschaft und Technologie darstellen. Von besonderem Interesse ist, dass die Atome als präzise Uhren und Sensoren dienen können, was die Möglichkeit eröffnet, leistungsstarke verteilte Sensor- und Zeitmessnetzwerke aufzubauen.

Research institution(s)
  • Universität Innsbruck - 100%

Research Output

  • 900 Citations
  • 29 Publications
  • 1 Methods & Materials
  • 2 Datasets & models
  • 2 Scientific Awards
  • 5 Fundings
Publications
  • 2024
    Title Multimode Ion-Photon Entanglement over 101 Kilometers
    DOI 10.1103/prxquantum.5.020308
    Type Journal Article
    Author Canteri M
    Journal PRX Quantum
  • 2019
    Title Light-matter entanglement over 50 km of optical fibre
    DOI 10.48550/arxiv.1901.06317
    Type Preprint
    Author Krutyanskiy V
  • 2018
    Title Observation of Entangled States of a Fully Controlled 20-Qubit System
    DOI 10.1103/physrevx.8.021012
    Type Journal Article
    Author Friis N
    Journal Physical Review X
    Pages 021012
    Link Publication
  • 2016
    Title Efficient tomography of a quantum many-body system
    DOI 10.48550/arxiv.1612.08000
    Type Preprint
    Author Lanyon B
  • 2021
    Title Towards a deterministic interface between trapped-ion qubits and travelling photons
    DOI 10.48550/arxiv.2105.02121
    Type Preprint
    Author Schupp J
  • 2023
    Title Quantum Repeater Goes the Distance
    DOI 10.1103/physics.16.84
    Type Journal Article
    Author Hajdušek M
    Journal Physics
    Pages 84
    Link Publication
  • 2023
    Title Telecom-Wavelength Quantum Repeater Node Based on a Trapped-Ion Processor
    DOI 10.1103/physrevlett.130.213601
    Type Journal Article
    Author Krutyanskiy V
    Journal Physical Review Letters
    Pages 213601
    Link Publication
  • 2021
    Title Interface between Trapped-Ion Qubits and Traveling Photons with Close-to-Optimal Efficiency
    DOI 10.1103/prxquantum.2.020331
    Type Journal Article
    Author Schupp J
    Journal PRX Quantum
    Pages 020331
    Link Publication
  • 2023
    Title Multimode ion-photon entanglement over 101 kilometers of optical fiber
    DOI 10.48550/arxiv.2308.08891
    Type Preprint
    Author Krutyanskiy V
  • 2022
    Title A Photonic Quantum Interface Between Trapped Ions and the Telecom C Band
    Type PhD Thesis
    Author Martin Meraner
    Link Publication
  • 2020
    Title Indistinguishable photons from a trapped-ion quantum network node
    DOI 10.1103/physreva.102.052614
    Type Journal Article
    Author Meraner M
    Journal Physical Review A
    Pages 052614
    Link Publication
  • 2019
    Title Light-matter entanglement over 50 km of optical fibre
    DOI 10.1038/s41534-019-0186-3
    Type Journal Article
    Author Krutyanskiy V
    Journal npj Quantum Information
    Pages 72
    Link Publication
  • 2019
    Title Indistinguishable photons from a trapped-ion quantum network node
    DOI 10.48550/arxiv.1912.09259
    Type Preprint
    Author Meraner M
  • 2021
    Title Interface between trapped-ion qubits and travelling phoyons with close-to-optimal efficiency
    Type PhD Thesis
    Author Josef Schupp
    Link Publication
  • 2023
    Title A telecom-wavelength quantum repeater node based on a trapped-ion processor
    DOI 10.5281/zenodo.7781416
    Type Journal Article
    Author Marco C
    Link Publication
  • 2023
    Title Entanglement of Trapped-Ion Qubits Separated by 230Meters.
    DOI 10.1103/physrevlett.130.050803
    Type Journal Article
    Author Galli M
    Journal Physical review letters
    Pages 050803
  • 2023
    Title A telecom-wavelength quantum repeater node based on a trapped-ion processor
    DOI 10.5281/zenodo.7781415
    Type Journal Article
    Author Marco C
    Link Publication
  • 2022
    Title Entanglement of trapped-ion qubits separated by 230 meters
    DOI 10.5281/zenodo.7031042
    Type Journal Article
    Author Galli M
    Link Publication
  • 2022
    Title Entanglement of trapped-ion qubits separated by 230 meters
    DOI 10.5281/zenodo.7031041
    Type Journal Article
    Author Galli M
    Link Publication
  • 2023
    Title Towards engineered quantum many-body systems made of individual atoms and photons
    Type Postdoctoral Thesis
    Author Ben Lanyon
  • 2022
    Title A telecom-wavelength quantum repeater node based on a trapped-ion processor
    DOI 10.48550/arxiv.2210.05418
    Type Preprint
    Author Krutyanskiy V
  • 2022
    Title Entanglement of trapped-ion qubits separated by 230 meters
    DOI 10.48550/arxiv.2208.14907
    Type Preprint
    Author Krutyanskiy V
  • 2017
    Title Deterministic quantum state transfer between remote qubits in cavities
    DOI 10.48550/arxiv.1704.06233
    Type Preprint
    Author Vogell B
  • 2017
    Title Quantum repeaters based on trapped ions with decoherence-free subspace encoding
    DOI 10.1088/2058-9565/aa7983
    Type Journal Article
    Author Zwerger M
    Journal Quantum Science and Technology
    Pages 044001
    Link Publication
  • 2017
    Title Efficient polarisation-preserving frequency conversion from a trapped-ion-compatible wavelength to the telecom C band
    DOI 10.48550/arxiv.1709.02413
    Type Preprint
    Author Krutyanskiy V
  • 2017
    Title Observation of Entangled States of a Fully Controlled 20-Qubit System
    DOI 10.48550/arxiv.1711.11092
    Type Preprint
    Author Friis N
  • 2017
    Title Polarisation-preserving photon frequency conversion from a trapped-ion-compatible wavelength to the telecom C-band
    DOI 10.1007/s00340-017-6806-8
    Type Journal Article
    Author Krutyanskiy V
    Journal Applied Physics B
    Pages 228
    Link Publication
  • 2017
    Title Deterministic quantum state transfer between remote qubits in cavities
    DOI 10.1088/2058-9565/aa868b
    Type Journal Article
    Author Vogell B
    Journal Quantum Science and Technology
    Pages 045003
    Link Publication
  • 2017
    Title Efficient tomography of a quantum many-body system
    DOI 10.1038/nphys4244
    Type Journal Article
    Author Lanyon B
    Journal Nature Physics
    Pages 1158-1162
Methods & Materials
  • 2019
    Title Polarization-preserving single photon frequency converter
    Type Improvements to research infrastructure
    Public Access
Datasets & models
  • 2021 Link
    Title Indistinguishable photons from a trapped-ion quantum network node
    DOI 10.5281/zenodo.4492160
    Type Database/Collection of data
    Public Access
    Link Link
  • 2021 Link
    Title Indistinguishable photons from a trapped-ion quantum network node
    DOI 10.5281/zenodo.4492161
    Type Database/Collection of data
    Public Access
    Link Link
Scientific Awards
  • 2019
    Title CIFAR fellow - Quantum Information Science
    Type Awarded honorary membership, or a fellowship, of a learned society
    Level of Recognition Continental/International
  • 2015
    Title List of conference invitations as speaker
    Type Personally asked as a key note speaker to a conference
    Level of Recognition Continental/International
Fundings
  • 2023
    Title QCI: Proof of Concept - Secure Connectivity Austria (QCI-CAT & FFG joint)
    Type Capital/infrastructure (including equipment)
    Start of Funding 2023
  • 2021
    Title Fellow in the CIFAR program in Quantum Information Science
    Type Fellowship
    Start of Funding 2021
  • 2022
    Title Quantum Internet Alliance - Phase 1
    Type Research grant (including intramural programme)
    Start of Funding 2022
  • 2018
    Title QIA (FETFLAG-03-2018 - FET Flagship on Quantum Technologies)
    Type Research grant (including intramural programme)
    Start of Funding 2018
  • 2021
    Title A quantum many-body interface between atoms and photons
    Type Research grant (including intramural programme)
    Start of Funding 2021

Discovering
what
matters.

Newsletter

FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

Contact

Austrian Science Fund (FWF)
Georg-Coch-Platz 2
(Entrance Wiesingerstraße 4)
1010 Vienna

office(at)fwf.ac.at
+43 1 505 67 40

General information

  • Job Openings
  • Jobs at FWF
  • Press
  • Philanthropy
  • scilog
  • FWF Office
  • Social Media Directory
  • LinkedIn, external URL, opens in a new window
  • , external URL, opens in a new window
  • Facebook, external URL, opens in a new window
  • Instagram, external URL, opens in a new window
  • YouTube, external URL, opens in a new window
  • Cookies
  • Whistleblowing/Complaints Management
  • Accessibility Statement
  • Data Protection
  • Acknowledgements
  • IFG-Form
  • Social Media Directory
  • © Österreichischer Wissenschaftsfonds FWF
© Österreichischer Wissenschaftsfonds FWF