• Skip to content (access key 1)
  • Skip to search (access key 7)
FWF — Austrian Science Fund
  • Go to overview page Discover

    • Research Radar
      • Research Radar Archives 1974–1994
    • Discoveries
      • Emmanuelle Charpentier
      • Adrian Constantin
      • Monika Henzinger
      • Ferenc Krausz
      • Wolfgang Lutz
      • Walter Pohl
      • Christa Schleper
      • Elly Tanaka
      • Anton Zeilinger
    • Impact Stories
      • Verena Gassner
      • Wolfgang Lechner
      • Georg Winter
    • scilog Magazine
    • Austrian Science Awards
      • FWF Wittgenstein Awards
      • FWF ASTRA Awards
      • FWF START Awards
      • Award Ceremony
    • excellent=austria
      • Clusters of Excellence
      • Emerging Fields
    • In the Spotlight
      • 40 Years of Erwin Schrödinger Fellowships
      • Quantum Austria
    • Dialogs and Talks
      • think.beyond Summit
    • Knowledge Transfer Events
    • E-Book Library
  • Go to overview page Funding

    • Portfolio
      • excellent=austria
        • Clusters of Excellence
        • Emerging Fields
      • Projects
        • Principal Investigator Projects
        • Principal Investigator Projects International
        • Clinical Research
        • 1000 Ideas
        • Arts-Based Research
        • FWF Wittgenstein Award
      • Careers
        • ESPRIT
        • FWF ASTRA Awards
        • Erwin Schrödinger
        • doc.funds
        • doc.funds.connect
      • Collaborations
        • Specialized Research Groups
        • Special Research Areas
        • Research Groups
        • International – Multilateral Initiatives
        • #ConnectingMinds
      • Communication
        • Top Citizen Science
        • Science Communication
        • Book Publications
        • Digital Publications
        • Open-Access Block Grant
      • Subject-Specific Funding
        • AI Mission Austria
        • Belmont Forum
        • ERA-NET HERA
        • ERA-NET NORFACE
        • ERA-NET QuantERA
        • ERA-NET TRANSCAN
        • Alternative Methods to Animal Testing
        • European Partnership Biodiversa+
        • European Partnership BrainHealth
        • European Partnership ERA4Health
        • European Partnership ERDERA
        • European Partnership EUPAHW
        • European Partnership FutureFoodS
        • European Partnership OHAMR
        • European Partnership PerMed
        • European Partnership Water4All
        • Gottfried and Vera Weiss Award
        • netidee SCIENCE
        • Herzfelder Foundation Projects
        • Quantum Austria
        • Rückenwind Funding Bonus
        • WE&ME Award
        • Zero Emissions Award
      • International Collaborations
        • Belgium/Flanders
        • Germany
        • France
        • Italy/South Tyrol
        • Japan
        • Luxembourg
        • Poland
        • Switzerland
        • Slovenia
        • Taiwan
        • Tyrol–South Tyrol–Trentino
        • Czech Republic
        • Hungary
    • Step by Step
      • Find Funding
      • Submitting Your Application
      • International Peer Review
      • Funding Decisions
      • Carrying out Your Project
      • Closing Your Project
      • Further Information
        • Integrity and Ethics
        • Inclusion
        • Applying from Abroad
        • Personnel Costs
        • PROFI
        • Final Project Reports
        • Final Project Report Survey
    • FAQ
      • Project Phase PROFI
      • Project Phase Ad Personam
      • Expiring Programs
        • Elise Richter and Elise Richter PEEK
        • FWF START Awards
  • Go to overview page About Us

    • Mission Statement
    • FWF Video
    • Values
    • Facts and Figures
    • Annual Report
    • What We Do
      • Research Funding
        • Matching Funds Initiative
      • International Collaborations
      • Studies and Publications
      • Equal Opportunities and Diversity
        • Objectives and Principles
        • Measures
        • Creating Awareness of Bias in the Review Process
        • Terms and Definitions
        • Your Career in Cutting-Edge Research
      • Open Science
        • Open-Access Policy
          • Open-Access Policy for Peer-Reviewed Publications
          • Open-Access Policy for Peer-Reviewed Book Publications
          • Open-Access Policy for Research Data
        • Research Data Management
        • Citizen Science
        • Open Science Infrastructures
        • Open Science Funding
      • Evaluations and Quality Assurance
      • Academic Integrity
      • Science Communication
      • Philanthropy
      • Sustainability
    • History
    • Legal Basis
    • Organization
      • Executive Bodies
        • Executive Board
        • Supervisory Board
        • Assembly of Delegates
        • Scientific Board
        • Juries
      • FWF Office
    • Jobs at FWF
  • Go to overview page News

    • News
    • Press
      • Logos
    • Calendar
      • Post an Event
      • FWF Informational Events
    • Job Openings
      • Enter Job Opening
    • Newsletter
  • Discovering
    what
    matters.

    FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

    SOCIAL MEDIA

    • LinkedIn, external URL, opens in a new window
    • , external URL, opens in a new window
    • Facebook, external URL, opens in a new window
    • Instagram, external URL, opens in a new window
    • YouTube, external URL, opens in a new window

    SCILOG

    • Scilog — The science magazine of the Austrian Science Fund (FWF)
  • elane login, external URL, opens in a new window
  • Scilog external URL, opens in a new window
  • de Wechsle zu Deutsch

  

DFR substrate specificity - completing the puzzle

DFR substrate specificity - completing the puzzle

Christian Haselmair-Gosch (ORCID: 0000-0003-3231-0962)
  • Grant DOI 10.55776/I6151
  • Funding program Principal Investigator Projects International
  • Status ongoing
  • Start May 1, 2023
  • End October 31, 2026
  • Funding amount € 383,363

Bilaterale Ausschreibung: Frankreich

Disciplines

Biology (70%); Computer Sciences (30%)

Keywords

    Dihydroflavonol 4-Reductase, Flavonoid Biosynthesis, Enzyme Characterization, Substrate Specificity, Protein Modelling, Site-Directed Mutagenesis

Abstract

Dihydroflavonol 4-reductase (DFR) is a key enzyme in flavonoid biosynthesis in plants and catalyzes the formation of anthocyanin precursors. The natural substrates for the DFR are dihydrokaempferol, dihydroquercetin and dihydromyricetin, which differ in their chemical structure by a different number of hydroxyl groups (OH groups) in the so-called B ring. The substrate specificity of DFRs can vary, with some DFRs accepting all three substrates equally, while others have high specificity for particular substrates. Since the number of OH groups in the substrate determines the color of the anthocyanins, the substrate specificity of the DFR is a decisive factor in the different expression of flower or fruit colors. The substrate specificity is determined by slight differences in the amino acid sequence in the region of the substrate binding site and thus slightly altered structure of the enzyme. Although numerous studies are available on the substrate specificity of the DFR, there is still no systematic understanding of how precisely this specificity is determined at the molecular level of the amino acid sequence. The aim is to establish the structure-function relationship of the DFR in terms of its specificity to the three substrates. In the project, various DFRs from plants are produced in bacterial cultures and their substrate specificity is examined using enzyme assays. The results are related to the respective amino acid sequences in the region of the substrate binding site. In particular, the DFR from the grapevine is of importance, since the crystal structure of the enzyme is known. This enables the complementary combination of "in silico" techniques (theoretical enzyme modeling using special software) with experimental data from the enzyme assays. In this way, the effects of changes in the amino acid sequence can be predicted and verified experimentally, and vice versa the corresponding substrate specificity can be derived in the model based on the amino acid sequences. This is supported by the generation of point mutations in the enzyme, where one or more amino acids in the region of the substrate binding site are specifically exchanged and the effect on the substrate specificity is determined. Ultimately, it should be possible to predict substrate specificity based on amino acid sequence information. The precise understanding of the substrate specificity at the level of the amino acid sequence contributes significantly to the targeted breeding of plants with new flower and fruit colors. Furthermore, the project deals with the evaluation of different DFR enzyme tests to enable robust and comparable results within the research community.

Research institution(s)
  • Technische Universität Wien - 100%
International project participants
  • Teemu Teeri, Helsinki University - Finland
  • Emmanuelle Bignon, CNRS/Université de Lorraine - France
  • Julien Diharce, Université de Paris - France

Discovering
what
matters.

Newsletter

FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

Contact

Austrian Science Fund (FWF)
Georg-Coch-Platz 2
(Entrance Wiesingerstraße 4)
1010 Vienna

office(at)fwf.ac.at
+43 1 505 67 40

General information

  • Job Openings
  • Jobs at FWF
  • Press
  • Philanthropy
  • scilog
  • FWF Office
  • Social Media Directory
  • LinkedIn, external URL, opens in a new window
  • , external URL, opens in a new window
  • Facebook, external URL, opens in a new window
  • Instagram, external URL, opens in a new window
  • YouTube, external URL, opens in a new window
  • Cookies
  • Whistleblowing/Complaints Management
  • Accessibility Statement
  • Data Protection
  • Acknowledgements
  • IFG-Form
  • Social Media Directory
  • © Österreichischer Wissenschaftsfonds FWF
© Österreichischer Wissenschaftsfonds FWF