• Skip to content (access key 1)
  • Skip to search (access key 7)
FWF — Austrian Science Fund
  • Go to overview page Discover

    • Research Radar
      • Research Radar Archives 1974–1994
    • Discoveries
      • Emmanuelle Charpentier
      • Adrian Constantin
      • Monika Henzinger
      • Ferenc Krausz
      • Wolfgang Lutz
      • Walter Pohl
      • Christa Schleper
      • Elly Tanaka
      • Anton Zeilinger
    • Impact Stories
      • Verena Gassner
      • Wolfgang Lechner
      • Georg Winter
    • scilog Magazine
    • Austrian Science Awards
      • FWF Wittgenstein Awards
      • FWF ASTRA Awards
      • FWF START Awards
      • Award Ceremony
    • excellent=austria
      • Clusters of Excellence
      • Emerging Fields
    • In the Spotlight
      • 40 Years of Erwin Schrödinger Fellowships
      • Quantum Austria
    • Dialogs and Talks
      • think.beyond Summit
    • Knowledge Transfer Events
    • E-Book Library
  • Go to overview page Funding

    • Portfolio
      • excellent=austria
        • Clusters of Excellence
        • Emerging Fields
      • Projects
        • Principal Investigator Projects
        • Principal Investigator Projects International
        • Clinical Research
        • 1000 Ideas
        • Arts-Based Research
        • FWF Wittgenstein Award
      • Careers
        • ESPRIT
        • FWF ASTRA Awards
        • Erwin Schrödinger
        • doc.funds
        • doc.funds.connect
      • Collaborations
        • Specialized Research Groups
        • Special Research Areas
        • Research Groups
        • International – Multilateral Initiatives
        • #ConnectingMinds
      • Communication
        • Top Citizen Science
        • Science Communication
        • Book Publications
        • Digital Publications
        • Open-Access Block Grant
      • Subject-Specific Funding
        • AI Mission Austria
        • Belmont Forum
        • ERA-NET HERA
        • ERA-NET NORFACE
        • ERA-NET QuantERA
        • ERA-NET TRANSCAN
        • Alternative Methods to Animal Testing
        • European Partnership Biodiversa+
        • European Partnership BrainHealth
        • European Partnership ERA4Health
        • European Partnership ERDERA
        • European Partnership EUPAHW
        • European Partnership FutureFoodS
        • European Partnership OHAMR
        • European Partnership PerMed
        • European Partnership Water4All
        • Gottfried and Vera Weiss Award
        • netidee SCIENCE
        • Herzfelder Foundation Projects
        • Quantum Austria
        • Rückenwind Funding Bonus
        • WE&ME Award
        • Zero Emissions Award
      • International Collaborations
        • Belgium/Flanders
        • Germany
        • France
        • Italy/South Tyrol
        • Japan
        • Luxembourg
        • Poland
        • Switzerland
        • Slovenia
        • Taiwan
        • Tyrol–South Tyrol–Trentino
        • Czech Republic
        • Hungary
    • Step by Step
      • Find Funding
      • Submitting Your Application
      • International Peer Review
      • Funding Decisions
      • Carrying out Your Project
      • Closing Your Project
      • Further Information
        • Integrity and Ethics
        • Inclusion
        • Applying from Abroad
        • Personnel Costs
        • PROFI
        • Final Project Reports
        • Final Project Report Survey
    • FAQ
      • Project Phase PROFI
      • Project Phase Ad Personam
      • Expiring Programs
        • Elise Richter and Elise Richter PEEK
        • FWF START Awards
  • Go to overview page About Us

    • Mission Statement
    • FWF Video
    • Values
    • Facts and Figures
    • Annual Report
    • What We Do
      • Research Funding
        • Matching Funds Initiative
      • International Collaborations
      • Studies and Publications
      • Equal Opportunities and Diversity
        • Objectives and Principles
        • Measures
        • Creating Awareness of Bias in the Review Process
        • Terms and Definitions
        • Your Career in Cutting-Edge Research
      • Open Science
        • Open-Access Policy
          • Open-Access Policy for Peer-Reviewed Publications
          • Open-Access Policy for Peer-Reviewed Book Publications
          • Open-Access Policy for Research Data
        • Research Data Management
        • Citizen Science
        • Open Science Infrastructures
        • Open Science Funding
      • Evaluations and Quality Assurance
      • Academic Integrity
      • Science Communication
      • Philanthropy
      • Sustainability
    • History
    • Legal Basis
    • Organization
      • Executive Bodies
        • Executive Board
        • Supervisory Board
        • Assembly of Delegates
        • Scientific Board
        • Juries
      • FWF Office
    • Jobs at FWF
  • Go to overview page News

    • News
    • Press
      • Logos
    • Calendar
      • Post an Event
      • FWF Informational Events
    • Job Openings
      • Enter Job Opening
    • Newsletter
  • Discovering
    what
    matters.

    FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

    SOCIAL MEDIA

    • LinkedIn, external URL, opens in a new window
    • , external URL, opens in a new window
    • Facebook, external URL, opens in a new window
    • Instagram, external URL, opens in a new window
    • YouTube, external URL, opens in a new window

    SCILOG

    • Scilog — The science magazine of the Austrian Science Fund (FWF)
  • elane login, external URL, opens in a new window
  • Scilog external URL, opens in a new window
  • de Wechsle zu Deutsch

  

Generalized functions and multiple characteristics

Generalized functions and multiple characteristics

Claudia Garetto (ORCID: )
  • Grant DOI 10.55776/J2908
  • Funding program Erwin Schrödinger
  • Status prematurely terminated
  • Funding amount € 69,200
  • Project website

Disciplines

Mathematics (100%)

Keywords

    Colombeau algebras of generalized functions, Hyperbolic systems of PDEs, Multiple characteristics, Fourier integral operators, Microlocal analysis, Singular coefficients and data

Abstract

The past decade has seen the emergence of a differential-algebraic theory of generalized functions that answered a wealth of questions on solutions to linear and nonlinear partial differential equations involving non-smooth coefficients and strongly singular data. In such cases, the theory of distributions does not provide a general framework in which solutions exist due to inherent constraints in dealing with nonlinear operations. An alternative framework is provided by the theory of Colombeau algebras of generalized functions. Interpreting the non-smooth coefficients and data as elements of the Colombeau algebra, existence and uniqueness has been established for many classes of equations by now. In particular, in order to study the regularity of solutions, microlocal techniques have been introduced into this setting and a calculus of generalized pseudodifferential operators, defined through Colombeau-regularization of non-smooth symbols, has been developed. A theory of generalized Fourier integral operators acting on Colombeau algebras, where both the phase function and amplitude are objects of Colombeau type, has been recently initiated. Starting from the preliminary work on generalized FIOs, this project will focus on solving hyperbolic equations and systems, generated by highly singular coefficients and data, by means of generalized FIO techniques and will provide a careful microlocal investigation of the solution by studying the microlocal mapping properties of these operators. The first part of the project will be devoted to a notion of generalized strict hyperbolicity for systems of pseudodifferential equations which assures the well-posedness of the corresponding Cauchy problem in the Colombeau context via construction of a generalized FIO parametrix. In other words we will express the Colombeau solution of a generalized hyperbolic system as action of a generalized FIO on the Cauchy data (modulo some smoothing error). This method has to be preferred to the proof via energy estimates, used so far for hyperbolic systems of PDEs in the Colombeau setting, because it delivers better insight into qualitative properties. More precisely, we will proceed to a microlocal investigation of the solution, by making use of generalized Hamiltonian flows and suitable notions of generalized wave front sets. The second part of the project will elaborate a Colombeau approach to systems of PDEs with multiple characteristics of variable multiplicity and singular coefficients. Via an approximation procedure, we will perform a transformation into a generalized strictly hyperbolic system for which the Cauchy problem is well-posed in the Colombeau context. Our method will not only allow a wide generality in the choice of coefficients and Cauchy data but will also provide generalized FIO techniques for systems with multiplicities. The Colombeau approach seems a promising way of overcoming the notorious difficulties of working with standard Fourier integral operators in case of systems with multiplicities.

Research institution(s)
  • Imperial College London - 100%

Discovering
what
matters.

Newsletter

FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

Contact

Austrian Science Fund (FWF)
Georg-Coch-Platz 2
(Entrance Wiesingerstraße 4)
1010 Vienna

office(at)fwf.ac.at
+43 1 505 67 40

General information

  • Job Openings
  • Jobs at FWF
  • Press
  • Philanthropy
  • scilog
  • FWF Office
  • Social Media Directory
  • LinkedIn, external URL, opens in a new window
  • , external URL, opens in a new window
  • Facebook, external URL, opens in a new window
  • Instagram, external URL, opens in a new window
  • YouTube, external URL, opens in a new window
  • Cookies
  • Whistleblowing/Complaints Management
  • Accessibility Statement
  • Data Protection
  • Acknowledgements
  • IFG-Form
  • Social Media Directory
  • © Österreichischer Wissenschaftsfonds FWF
© Österreichischer Wissenschaftsfonds FWF