• Skip to content (access key 1)
  • Skip to search (access key 7)
FWF — Austrian Science Fund
  • Go to overview page Discover

    • Research Radar
      • Research Radar Archives 1974–1994
    • Discoveries
      • Emmanuelle Charpentier
      • Adrian Constantin
      • Monika Henzinger
      • Ferenc Krausz
      • Wolfgang Lutz
      • Walter Pohl
      • Christa Schleper
      • Elly Tanaka
      • Anton Zeilinger
    • Impact Stories
      • Verena Gassner
      • Wolfgang Lechner
      • Georg Winter
    • scilog Magazine
    • Austrian Science Awards
      • FWF Wittgenstein Awards
      • FWF ASTRA Awards
      • FWF START Awards
      • Award Ceremony
    • excellent=austria
      • Clusters of Excellence
      • Emerging Fields
    • In the Spotlight
      • 40 Years of Erwin Schrödinger Fellowships
      • Quantum Austria
    • Dialogs and Talks
      • think.beyond Summit
    • Knowledge Transfer Events
    • E-Book Library
  • Go to overview page Funding

    • Portfolio
      • excellent=austria
        • Clusters of Excellence
        • Emerging Fields
      • Projects
        • Principal Investigator Projects
        • Principal Investigator Projects International
        • Clinical Research
        • 1000 Ideas
        • Arts-Based Research
        • FWF Wittgenstein Award
      • Careers
        • ESPRIT
        • FWF ASTRA Awards
        • Erwin Schrödinger
        • doc.funds
        • doc.funds.connect
      • Collaborations
        • Specialized Research Groups
        • Special Research Areas
        • Research Groups
        • International – Multilateral Initiatives
        • #ConnectingMinds
      • Communication
        • Top Citizen Science
        • Science Communication
        • Book Publications
        • Digital Publications
        • Open-Access Block Grant
      • Subject-Specific Funding
        • AI Mission Austria
        • Belmont Forum
        • ERA-NET HERA
        • ERA-NET NORFACE
        • ERA-NET QuantERA
        • ERA-NET TRANSCAN
        • Alternative Methods to Animal Testing
        • European Partnership Biodiversa+
        • European Partnership BrainHealth
        • European Partnership ERA4Health
        • European Partnership ERDERA
        • European Partnership EUPAHW
        • European Partnership FutureFoodS
        • European Partnership OHAMR
        • European Partnership PerMed
        • European Partnership Water4All
        • Gottfried and Vera Weiss Award
        • netidee SCIENCE
        • Herzfelder Foundation Projects
        • Quantum Austria
        • Rückenwind Funding Bonus
        • WE&ME Award
        • Zero Emissions Award
      • International Collaborations
        • Belgium/Flanders
        • Germany
        • France
        • Italy/South Tyrol
        • Japan
        • Luxembourg
        • Poland
        • Switzerland
        • Slovenia
        • Taiwan
        • Tyrol–South Tyrol–Trentino
        • Czech Republic
        • Hungary
    • Step by Step
      • Find Funding
      • Submitting Your Application
      • International Peer Review
      • Funding Decisions
      • Carrying out Your Project
      • Closing Your Project
      • Further Information
        • Integrity and Ethics
        • Inclusion
        • Applying from Abroad
        • Personnel Costs
        • PROFI
        • Final Project Reports
        • Final Project Report Survey
    • FAQ
      • Project Phase PROFI
      • Project Phase Ad Personam
      • Expiring Programs
        • Elise Richter and Elise Richter PEEK
        • FWF START Awards
  • Go to overview page About Us

    • Mission Statement
    • FWF Video
    • Values
    • Facts and Figures
    • Annual Report
    • What We Do
      • Research Funding
        • Matching Funds Initiative
      • International Collaborations
      • Studies and Publications
      • Equal Opportunities and Diversity
        • Objectives and Principles
        • Measures
        • Creating Awareness of Bias in the Review Process
        • Terms and Definitions
        • Your Career in Cutting-Edge Research
      • Open Science
        • Open-Access Policy
          • Open-Access Policy for Peer-Reviewed Publications
          • Open-Access Policy for Peer-Reviewed Book Publications
          • Open-Access Policy for Research Data
        • Research Data Management
        • Citizen Science
        • Open Science Infrastructures
        • Open Science Funding
      • Evaluations and Quality Assurance
      • Academic Integrity
      • Science Communication
      • Philanthropy
      • Sustainability
    • History
    • Legal Basis
    • Organization
      • Executive Bodies
        • Executive Board
        • Supervisory Board
        • Assembly of Delegates
        • Scientific Board
        • Juries
      • FWF Office
    • Jobs at FWF
  • Go to overview page News

    • News
    • Press
      • Logos
    • Calendar
      • Post an Event
      • FWF Informational Events
    • Job Openings
      • Enter Job Opening
    • Newsletter
  • Discovering
    what
    matters.

    FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

    SOCIAL MEDIA

    • LinkedIn, external URL, opens in a new window
    • , external URL, opens in a new window
    • Facebook, external URL, opens in a new window
    • Instagram, external URL, opens in a new window
    • YouTube, external URL, opens in a new window

    SCILOG

    • Scilog — The science magazine of the Austrian Science Fund (FWF)
  • elane login, external URL, opens in a new window
  • Scilog external URL, opens in a new window
  • de Wechsle zu Deutsch

  

Investigations of the Phase Transition in QED on the Lattice

Investigations of the Phase Transition in QED on the Lattice

Manfried Faber (ORCID: 0000-0002-3572-5429)
  • Grant DOI 10.55776/P16910
  • Funding program Principal Investigator Projects
  • Status ended
  • Start February 1, 2004
  • End January 31, 2007
  • Funding amount € 87,003
  • Project website

Disciplines

Physics, Astronomy (100%)

Keywords

    QED, Lattice, CQED, Monopole, Phase transition, Confinement

Final report

The aim of this project is the investigation of some aspects concerning the phase transition in compact quantum electrodynamics (CQED). This theory is a formulation of quantum electrodynamics on a discrete lattice in space and time. The artificial introduction of a discrete lattice of finite size clearly influences physical results. At the end of the calculations the continuous limit is performed, this means that all calculated variables are evaluated for diminishing small distances between the lattice points. Up to now, all calculations were done with point like magnetic monopoles, which are placed inside the lattice cubes. The influence of the lattice is felt in the movement of these monopoles. In this project a new theory is applied for the first time which enables to perform calculations for monopoles of arbitrary size. If a monopole extends over several lattice cubes the influence of a single cube on the movement of the extended monopole is much smaller than the influence on point like monopoles which were used in former investigations. In this project the software was developed which enables to perform calculations with point like and extended monopoles. First, it was shown that the former results can be reproduced with the software and point like monopoles. Furthermore, it was shown that the new theory of extended monopoles yields the same physical results as point like monopoles in the limit of vanishing extension. Former calculations have shown that there are two phases in CQED. In one of these, the coulombic phase, the theory appears in complete agreement with experience that means electric charges exist which interact by electric and magnetic fields. The second phase is the confinement phase. In this phase magnetic charges, that means magnetic monopoles, appear which tie up electric fields thus creating the so called confinement. Unlike charges are bound since the potential between them increases linearly with their relative distance. The phase transition in CQED is either a first or second order transition. In the case of first order phase transitions there does not exist a continuous limit, i.e. there is no transition from the formulation on the lattice to the one in continuous space-time. In the case of a second order phase transition a continuous limit exists, which is an important condition for the validity of the theory. Thus, the determination of the order of this phase transition is of crucial importance. Since the 1980s there are investigations to determine the order of the phase transition. Up to now, no unique result has been obtained since there are hints for both, a phase transition of first order and second order. The performed simulations show that the phase transition dependents on the size of the monopoles. Thus, the introduction of a space-time lattice influences the phase transition essentially. Further investigations are done in order to evaluate the order of the phase transition in the above described extended version of CQED under consideration of these new results.

Research institution(s)
  • Technische Universität Wien - 100%

Discovering
what
matters.

Newsletter

FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

Contact

Austrian Science Fund (FWF)
Georg-Coch-Platz 2
(Entrance Wiesingerstraße 4)
1010 Vienna

office(at)fwf.ac.at
+43 1 505 67 40

General information

  • Job Openings
  • Jobs at FWF
  • Press
  • Philanthropy
  • scilog
  • FWF Office
  • Social Media Directory
  • LinkedIn, external URL, opens in a new window
  • , external URL, opens in a new window
  • Facebook, external URL, opens in a new window
  • Instagram, external URL, opens in a new window
  • YouTube, external URL, opens in a new window
  • Cookies
  • Whistleblowing/Complaints Management
  • Accessibility Statement
  • Data Protection
  • Acknowledgements
  • IFG-Form
  • Social Media Directory
  • © Österreichischer Wissenschaftsfonds FWF
© Österreichischer Wissenschaftsfonds FWF