• Skip to content (access key 1)
  • Skip to search (access key 7)
FWF — Austrian Science Fund
  • Go to overview page Discover

    • Research Radar
      • Research Radar Archives 1974–1994
    • Discoveries
      • Emmanuelle Charpentier
      • Adrian Constantin
      • Monika Henzinger
      • Ferenc Krausz
      • Wolfgang Lutz
      • Walter Pohl
      • Christa Schleper
      • Elly Tanaka
      • Anton Zeilinger
    • Impact Stories
      • Verena Gassner
      • Wolfgang Lechner
      • Georg Winter
    • scilog Magazine
    • Austrian Science Awards
      • FWF Wittgenstein Awards
      • FWF ASTRA Awards
      • FWF START Awards
      • Award Ceremony
    • excellent=austria
      • Clusters of Excellence
      • Emerging Fields
    • In the Spotlight
      • 40 Years of Erwin Schrödinger Fellowships
      • Quantum Austria
    • Dialogs and Talks
      • think.beyond Summit
    • Knowledge Transfer Events
    • E-Book Library
  • Go to overview page Funding

    • Portfolio
      • excellent=austria
        • Clusters of Excellence
        • Emerging Fields
      • Projects
        • Principal Investigator Projects
        • Principal Investigator Projects International
        • Clinical Research
        • 1000 Ideas
        • Arts-Based Research
        • FWF Wittgenstein Award
      • Careers
        • ESPRIT
        • FWF ASTRA Awards
        • Erwin Schrödinger
        • doc.funds
        • doc.funds.connect
      • Collaborations
        • Specialized Research Groups
        • Special Research Areas
        • Research Groups
        • International – Multilateral Initiatives
        • #ConnectingMinds
      • Communication
        • Top Citizen Science
        • Science Communication
        • Book Publications
        • Digital Publications
        • Open-Access Block Grant
      • Subject-Specific Funding
        • AI Mission Austria
        • Belmont Forum
        • ERA-NET HERA
        • ERA-NET NORFACE
        • ERA-NET QuantERA
        • ERA-NET TRANSCAN
        • Alternative Methods to Animal Testing
        • European Partnership Biodiversa+
        • European Partnership BrainHealth
        • European Partnership ERA4Health
        • European Partnership ERDERA
        • European Partnership EUPAHW
        • European Partnership FutureFoodS
        • European Partnership OHAMR
        • European Partnership PerMed
        • European Partnership Water4All
        • Gottfried and Vera Weiss Award
        • netidee SCIENCE
        • Herzfelder Foundation Projects
        • Quantum Austria
        • Rückenwind Funding Bonus
        • WE&ME Award
        • Zero Emissions Award
      • International Collaborations
        • Belgium/Flanders
        • Germany
        • France
        • Italy/South Tyrol
        • Japan
        • Luxembourg
        • Poland
        • Switzerland
        • Slovenia
        • Taiwan
        • Tyrol–South Tyrol–Trentino
        • Czech Republic
        • Hungary
    • Step by Step
      • Find Funding
      • Submitting Your Application
      • International Peer Review
      • Funding Decisions
      • Carrying out Your Project
      • Closing Your Project
      • Further Information
        • Integrity and Ethics
        • Inclusion
        • Applying from Abroad
        • Personnel Costs
        • PROFI
        • Final Project Reports
        • Final Project Report Survey
    • FAQ
      • Project Phase PROFI
      • Project Phase Ad Personam
      • Expiring Programs
        • Elise Richter and Elise Richter PEEK
        • FWF START Awards
  • Go to overview page About Us

    • Mission Statement
    • FWF Video
    • Values
    • Facts and Figures
    • Annual Report
    • What We Do
      • Research Funding
        • Matching Funds Initiative
      • International Collaborations
      • Studies and Publications
      • Equal Opportunities and Diversity
        • Objectives and Principles
        • Measures
        • Creating Awareness of Bias in the Review Process
        • Terms and Definitions
        • Your Career in Cutting-Edge Research
      • Open Science
        • Open-Access Policy
          • Open-Access Policy for Peer-Reviewed Publications
          • Open-Access Policy for Peer-Reviewed Book Publications
          • Open-Access Policy for Research Data
        • Research Data Management
        • Citizen Science
        • Open Science Infrastructures
        • Open Science Funding
      • Evaluations and Quality Assurance
      • Academic Integrity
      • Science Communication
      • Philanthropy
      • Sustainability
    • History
    • Legal Basis
    • Organization
      • Executive Bodies
        • Executive Board
        • Supervisory Board
        • Assembly of Delegates
        • Scientific Board
        • Juries
      • FWF Office
    • Jobs at FWF
  • Go to overview page News

    • News
    • Press
      • Logos
    • Calendar
      • Post an Event
      • FWF Informational Events
    • Job Openings
      • Enter Job Opening
    • Newsletter
  • Discovering
    what
    matters.

    FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

    SOCIAL MEDIA

    • LinkedIn, external URL, opens in a new window
    • , external URL, opens in a new window
    • Facebook, external URL, opens in a new window
    • Instagram, external URL, opens in a new window
    • YouTube, external URL, opens in a new window

    SCILOG

    • Scilog — The science magazine of the Austrian Science Fund (FWF)
  • elane login, external URL, opens in a new window
  • Scilog external URL, opens in a new window
  • de Wechsle zu Deutsch

  

SSC and SQP for mixed constrained optimal control problems

SSC and SQP for mixed constrained optimal control problems

Arnd Rösch (ORCID: )
  • Grant DOI 10.55776/P18056
  • Funding program Principal Investigator Projects
  • Status ended
  • Start August 1, 2005
  • End July 31, 2008
  • Funding amount € 95,140
  • Project website

Disciplines

Mathematics (100%)

Keywords

    Optimal Control, Sufficient Optimality Conditions, Convergence Theory, SQP-method, Partial Differential Equations, Mixed Constraints

Abstract Final report

Many technical processes are described by partial differential equations. The optimization of such processes or identification of material parameters leads to optimal control problems for partial differential equations. Naturally, some quantities of the process have to be restricted to admissible ranges. The scope of this project covers optimal control of elliptic and parabolic partial differential equations with pointwise inequality constraints in space and time. Typically, nonlinear functions are involved in real-life problems. In turn, necessary and sufficient optimality conditions of nonlinear optimal control problems contain first and second derivatives of these nonlinearities. Sufficient optimality conditions can ensure stability under perturbations of the solutions of the investigated optimal control problems. Moreover, they represent the key to prove convergence of fast and efficient numerical methods. Until now, sufficient optimality conditions, stability results, and convergence of fast numerical methods are only known in case the pointwise inequality constraints affect solely the controls of the system. In contrast, real-life problems contain typically both, pointwise inequality constraints for controls and process quantities, i.e., states. Inequality constraints for process quantities alone lead to mathematical problems which are far from being solved. In this project, we will establish sufficient optimality conditions and we will prove stability results and convergence of the SQP-method for mixed constrained optimal control problems: Pointwise inequality conditions containing controls and process quantities are simultaneously involved in such constraints. These theory developed in this project will guarantee reliable numerical results for arbitrary fine discretizations of the involved partial differential equations.

Many technical processes are described by partial differential equations. The optimization of such processes or identification of material parameters leads to optimal control problems for partial differential equations. Naturally, some quantities of the process have to be restricted to admissible ranges. The scope of this project covers optimal control of elliptic and parabolic partial differential equations with pointwise inequality constraints in space and time. Typically, nonlinear functions are involved in real-life problems. In turn, necessary and sufficient optimality conditions of nonlinear optimal control problems contain first and second derivatives of these nonlinearities. Sufficient optimality conditions can ensure stability under perturbations of the solutions of the investigated optimal control problems. Moreover, they represent the key to prove convergence of fast and efficient numerical methods. Until now, sufficient optimality conditions, stability results, and convergence of fast numerical methods are only known in case the pointwise inequality constraints affect solely the controls of the system. In contrast, real-life problems contain typically both, pointwise inequality constraints for controls and process quantities, i.e., states. Inequality constraints for process quantities alone lead to mathematical problems which are far from being solved. In this project, we will establish sufficient optimality conditions and we will prove stability results and convergence of the SQP-method for mixed constrained optimal control problems: Pointwise inequality conditions containing controls and process quantities are simultaneously involved in such constraints. These theory developed in this project will guarantee reliable numerical results for arbitrary fine discretizations of the involved partial differential equations.

Research institution(s)
  • Österreichische Akademie der Wissenschaften - 100%
International project participants
  • Jean-Pierre Raymond, Université Paul Sabatier - France
  • Walter Alt, Friedrich Schiller Universität Jena - Germany
  • Daniel Wachsmuth, Technische Universität Berlin - Germany
  • Fredi Tröltzsch, Technische Universität Berlin - Germany

Research Output

  • 32 Citations
  • 2 Publications
Publications
  • 2009
    Title Lipschitz stability for elliptic optimal control problems with mixed control-state constraints
    DOI 10.1080/02331930902863749
    Type Journal Article
    Author Alt W
    Journal Optimization
    Pages 833-849
  • 2008
    Title Convergence analysis of the SQP method for nonlinear mixed-constrained elliptic optimal control problems
    DOI 10.1002/zamm.200800036
    Type Journal Article
    Author Griesse R
    Journal ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und
    Pages 776-792
    Link Publication

Discovering
what
matters.

Newsletter

FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

Contact

Austrian Science Fund (FWF)
Georg-Coch-Platz 2
(Entrance Wiesingerstraße 4)
1010 Vienna

office(at)fwf.ac.at
+43 1 505 67 40

General information

  • Job Openings
  • Jobs at FWF
  • Press
  • Philanthropy
  • scilog
  • FWF Office
  • Social Media Directory
  • LinkedIn, external URL, opens in a new window
  • , external URL, opens in a new window
  • Facebook, external URL, opens in a new window
  • Instagram, external URL, opens in a new window
  • YouTube, external URL, opens in a new window
  • Cookies
  • Whistleblowing/Complaints Management
  • Accessibility Statement
  • Data Protection
  • Acknowledgements
  • IFG-Form
  • Social Media Directory
  • © Österreichischer Wissenschaftsfonds FWF
© Österreichischer Wissenschaftsfonds FWF