• Skip to content (access key 1)
  • Skip to search (access key 7)
FWF — Austrian Science Fund
  • Go to overview page Discover

    • Research Radar
      • Research Radar Archives 1974–1994
    • Discoveries
      • Emmanuelle Charpentier
      • Adrian Constantin
      • Monika Henzinger
      • Ferenc Krausz
      • Wolfgang Lutz
      • Walter Pohl
      • Christa Schleper
      • Elly Tanaka
      • Anton Zeilinger
    • Impact Stories
      • Verena Gassner
      • Wolfgang Lechner
      • Georg Winter
    • scilog Magazine
    • Austrian Science Awards
      • FWF Wittgenstein Awards
      • FWF ASTRA Awards
      • FWF START Awards
      • Award Ceremony
    • excellent=austria
      • Clusters of Excellence
      • Emerging Fields
    • In the Spotlight
      • 40 Years of Erwin Schrödinger Fellowships
      • Quantum Austria
    • Dialogs and Talks
      • think.beyond Summit
    • Knowledge Transfer Events
    • E-Book Library
  • Go to overview page Funding

    • Portfolio
      • excellent=austria
        • Clusters of Excellence
        • Emerging Fields
      • Projects
        • Principal Investigator Projects
        • Principal Investigator Projects International
        • Clinical Research
        • 1000 Ideas
        • Arts-Based Research
        • FWF Wittgenstein Award
      • Careers
        • ESPRIT
        • FWF ASTRA Awards
        • Erwin Schrödinger
        • doc.funds
        • doc.funds.connect
      • Collaborations
        • Specialized Research Groups
        • Special Research Areas
        • Research Groups
        • International – Multilateral Initiatives
        • #ConnectingMinds
      • Communication
        • Top Citizen Science
        • Science Communication
        • Book Publications
        • Digital Publications
        • Open-Access Block Grant
      • Subject-Specific Funding
        • AI Mission Austria
        • Belmont Forum
        • ERA-NET HERA
        • ERA-NET NORFACE
        • ERA-NET QuantERA
        • ERA-NET TRANSCAN
        • Alternative Methods to Animal Testing
        • European Partnership Biodiversa+
        • European Partnership BrainHealth
        • European Partnership ERA4Health
        • European Partnership ERDERA
        • European Partnership EUPAHW
        • European Partnership FutureFoodS
        • European Partnership OHAMR
        • European Partnership PerMed
        • European Partnership Water4All
        • Gottfried and Vera Weiss Award
        • netidee SCIENCE
        • Herzfelder Foundation Projects
        • Quantum Austria
        • Rückenwind Funding Bonus
        • WE&ME Award
        • Zero Emissions Award
      • International Collaborations
        • Belgium/Flanders
        • Germany
        • France
        • Italy/South Tyrol
        • Japan
        • Luxembourg
        • Poland
        • Switzerland
        • Slovenia
        • Taiwan
        • Tyrol–South Tyrol–Trentino
        • Czech Republic
        • Hungary
    • Step by Step
      • Find Funding
      • Submitting Your Application
      • International Peer Review
      • Funding Decisions
      • Carrying out Your Project
      • Closing Your Project
      • Further Information
        • Integrity and Ethics
        • Inclusion
        • Applying from Abroad
        • Personnel Costs
        • PROFI
        • Final Project Reports
        • Final Project Report Survey
    • FAQ
      • Project Phase PROFI
      • Project Phase Ad Personam
      • Expiring Programs
        • Elise Richter and Elise Richter PEEK
        • FWF START Awards
  • Go to overview page About Us

    • Mission Statement
    • FWF Video
    • Values
    • Facts and Figures
    • Annual Report
    • What We Do
      • Research Funding
        • Matching Funds Initiative
      • International Collaborations
      • Studies and Publications
      • Equal Opportunities and Diversity
        • Objectives and Principles
        • Measures
        • Creating Awareness of Bias in the Review Process
        • Terms and Definitions
        • Your Career in Cutting-Edge Research
      • Open Science
        • Open-Access Policy
          • Open-Access Policy for Peer-Reviewed Publications
          • Open-Access Policy for Peer-Reviewed Book Publications
          • Open-Access Policy for Research Data
        • Research Data Management
        • Citizen Science
        • Open Science Infrastructures
        • Open Science Funding
      • Evaluations and Quality Assurance
      • Academic Integrity
      • Science Communication
      • Philanthropy
      • Sustainability
    • History
    • Legal Basis
    • Organization
      • Executive Bodies
        • Executive Board
        • Supervisory Board
        • Assembly of Delegates
        • Scientific Board
        • Juries
      • FWF Office
    • Jobs at FWF
  • Go to overview page News

    • News
    • Press
      • Logos
    • Calendar
      • Post an Event
      • FWF Informational Events
    • Job Openings
      • Enter Job Opening
    • Newsletter
  • Discovering
    what
    matters.

    FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

    SOCIAL MEDIA

    • LinkedIn, external URL, opens in a new window
    • , external URL, opens in a new window
    • Facebook, external URL, opens in a new window
    • Instagram, external URL, opens in a new window
    • YouTube, external URL, opens in a new window

    SCILOG

    • Scilog — The science magazine of the Austrian Science Fund (FWF)
  • elane login, external URL, opens in a new window
  • Scilog external URL, opens in a new window
  • de Wechsle zu Deutsch

  

Approximation of optimal control problems governed by PDEs

Approximation of optimal control problems governed by PDEs

Arnd Rösch (ORCID: )
  • Grant DOI 10.55776/P18090
  • Funding program Principal Investigator Projects
  • Status ended
  • Start August 1, 2005
  • End October 31, 2008
  • Funding amount € 188,181
  • Project website

Disciplines

Mathematics (100%)

Keywords

    Optimal Control, Error Estimates, Superconvergence, Approximation, Partial Differential Equations

Abstract Final report

Many technical processes are described by systems of partial differential equations. Optimization of such processes or identification of process parameters lead to optimal control problems for partial differential equations. Usually, such problems are characterized by additional constraints, i.e. some quantities of the process have to fulfil certain equations and inequalities. This project is concerned with linear-quadratic optimal control problems: The optimization goal is a quadratic function of the process quantities. Moreover, these quantities occur linear in the equations and inequalities. This project is especially interested in investigating elliptic and parabolic differential equations. Although this class of problems has a simple structure, it is impossible to solve such problems exactly. Therefore, it is necessary to discretize such problems in a suitable manner. Consequently, approximation properties of the discretized problems with respect to the solution of the continuous problem represent a main focus of the project. There is a large progress in the theory of control constrained problems in the recent years. In contrast to this, approximation results for state constrained optimal control problems are nearly unknown. This project will lower the large gap between the well investigated control constrained case and the widely unknown field of state constrained problems. Moreover, the results should be used to construct stopping criteria for iterative methods. Stopping criteria based on error estimates can drastically reduce computational time for optimal control problems in a reliable way. Therefore, it is possible to solve larger and more complicate problems in future. So-called superconvergence effects appear by solving optimal control problems numerically. A better understanding of superconvergence effects should help to exploit them in numerical algoritms. Such algorithms deliver essential better numerical results for a given discretization.

Many technical processes are described by systems of partial differential equations. Optimization of such processes or identification of process parameter lead to optimal control problems for partial differential equations. Usually, such processes are characterized by additional constraints, i.e., some quantities of the process have to fulfil certain equations and inequalities. This project was concerned with linear-quadratic optimal control problems. The optimization goal was a quadratic functional. Moreover, the quantities occurred linear in the equations and inequalities. Main goal of the project was the investigation of discretization and regularization strategies in particular for state constrained optimal control problems. We achieved a lot of new and innovative results for this important class of optimal control problems. A first issue was the regularization of state constrained problems by problems with mixed control-state constraints. We were able to derive estimates for the regularization error for the Lavrentiev regularization and for the new virtual control concept. Moreover, we studied the discretization error for both approaches for finite element discretizations. By means of an improvement of the primal dual active set strategy we were able to construct an efficient method for solving such kind of problems. Since we derived also error estimates for the optimization algorithm itself, we developed a new concept for solving optimal control problems with state constraints efficiently with given accuracy.

Research institution(s)
  • Universität Duisburg-Essen - 100%
International project participants
  • Fredi Tröltzsch, Technische Universität Berlin - Germany
  • Christian Meyer, Technische Universität Dortmund - Germany
  • Michael Hinze, Universität Koblenz-Landau - Germany
  • Eduardo Casas, Universidad de Cantabria - Spain
  • Mariano Mateos, Universidad de Oviedo - Spain

Research Output

  • 1 Publications
Publications
  • 2007
    Title On saturation effects in the Neumann boundary control of elliptic optimal control problems
    DOI 10.1002/pamm.200700674
    Type Journal Article
    Author Mateos M
    Journal PAMM
    Pages 1060505-1060506

Discovering
what
matters.

Newsletter

FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

Contact

Austrian Science Fund (FWF)
Georg-Coch-Platz 2
(Entrance Wiesingerstraße 4)
1010 Vienna

office(at)fwf.ac.at
+43 1 505 67 40

General information

  • Job Openings
  • Jobs at FWF
  • Press
  • Philanthropy
  • scilog
  • FWF Office
  • Social Media Directory
  • LinkedIn, external URL, opens in a new window
  • , external URL, opens in a new window
  • Facebook, external URL, opens in a new window
  • Instagram, external URL, opens in a new window
  • YouTube, external URL, opens in a new window
  • Cookies
  • Whistleblowing/Complaints Management
  • Accessibility Statement
  • Data Protection
  • Acknowledgements
  • IFG-Form
  • Social Media Directory
  • © Österreichischer Wissenschaftsfonds FWF
© Österreichischer Wissenschaftsfonds FWF