• Skip to content (access key 1)
  • Skip to search (access key 7)
FWF — Austrian Science Fund
  • Go to overview page Discover

    • Research Radar
      • Research Radar Archives 1974–1994
    • Discoveries
      • Emmanuelle Charpentier
      • Adrian Constantin
      • Monika Henzinger
      • Ferenc Krausz
      • Wolfgang Lutz
      • Walter Pohl
      • Christa Schleper
      • Elly Tanaka
      • Anton Zeilinger
    • Impact Stories
      • Verena Gassner
      • Wolfgang Lechner
      • Georg Winter
    • scilog Magazine
    • Austrian Science Awards
      • FWF Wittgenstein Awards
      • FWF ASTRA Awards
      • FWF START Awards
      • Award Ceremony
    • excellent=austria
      • Clusters of Excellence
      • Emerging Fields
    • In the Spotlight
      • 40 Years of Erwin Schrödinger Fellowships
      • Quantum Austria
    • Dialogs and Talks
      • think.beyond Summit
    • Knowledge Transfer Events
    • E-Book Library
  • Go to overview page Funding

    • Portfolio
      • excellent=austria
        • Clusters of Excellence
        • Emerging Fields
      • Projects
        • Principal Investigator Projects
        • Principal Investigator Projects International
        • Clinical Research
        • 1000 Ideas
        • Arts-Based Research
        • FWF Wittgenstein Award
      • Careers
        • ESPRIT
        • FWF ASTRA Awards
        • Erwin Schrödinger
        • doc.funds
        • doc.funds.connect
      • Collaborations
        • Specialized Research Groups
        • Special Research Areas
        • Research Groups
        • International – Multilateral Initiatives
        • #ConnectingMinds
      • Communication
        • Top Citizen Science
        • Science Communication
        • Book Publications
        • Digital Publications
        • Open-Access Block Grant
      • Subject-Specific Funding
        • AI Mission Austria
        • Belmont Forum
        • ERA-NET HERA
        • ERA-NET NORFACE
        • ERA-NET QuantERA
        • ERA-NET TRANSCAN
        • Alternative Methods to Animal Testing
        • European Partnership Biodiversa+
        • European Partnership BrainHealth
        • European Partnership ERA4Health
        • European Partnership ERDERA
        • European Partnership EUPAHW
        • European Partnership FutureFoodS
        • European Partnership OHAMR
        • European Partnership PerMed
        • European Partnership Water4All
        • Gottfried and Vera Weiss Award
        • netidee SCIENCE
        • Herzfelder Foundation Projects
        • Quantum Austria
        • Rückenwind Funding Bonus
        • WE&ME Award
        • Zero Emissions Award
      • International Collaborations
        • Belgium/Flanders
        • Germany
        • France
        • Italy/South Tyrol
        • Japan
        • Luxembourg
        • Poland
        • Switzerland
        • Slovenia
        • Taiwan
        • Tyrol–South Tyrol–Trentino
        • Czech Republic
        • Hungary
    • Step by Step
      • Find Funding
      • Submitting Your Application
      • International Peer Review
      • Funding Decisions
      • Carrying out Your Project
      • Closing Your Project
      • Further Information
        • Integrity and Ethics
        • Inclusion
        • Applying from Abroad
        • Personnel Costs
        • PROFI
        • Final Project Reports
        • Final Project Report Survey
    • FAQ
      • Project Phase PROFI
      • Project Phase Ad Personam
      • Expiring Programs
        • Elise Richter and Elise Richter PEEK
        • FWF START Awards
  • Go to overview page About Us

    • Mission Statement
    • FWF Video
    • Values
    • Facts and Figures
    • Annual Report
    • What We Do
      • Research Funding
        • Matching Funds Initiative
      • International Collaborations
      • Studies and Publications
      • Equal Opportunities and Diversity
        • Objectives and Principles
        • Measures
        • Creating Awareness of Bias in the Review Process
        • Terms and Definitions
        • Your Career in Cutting-Edge Research
      • Open Science
        • Open-Access Policy
          • Open-Access Policy for Peer-Reviewed Publications
          • Open-Access Policy for Peer-Reviewed Book Publications
          • Open-Access Policy for Research Data
        • Research Data Management
        • Citizen Science
        • Open Science Infrastructures
        • Open Science Funding
      • Evaluations and Quality Assurance
      • Academic Integrity
      • Science Communication
      • Philanthropy
      • Sustainability
    • History
    • Legal Basis
    • Organization
      • Executive Bodies
        • Executive Board
        • Supervisory Board
        • Assembly of Delegates
        • Scientific Board
        • Juries
      • FWF Office
    • Jobs at FWF
  • Go to overview page News

    • News
    • Press
      • Logos
    • Calendar
      • Post an Event
      • FWF Informational Events
    • Job Openings
      • Enter Job Opening
    • Newsletter
  • Discovering
    what
    matters.

    FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

    SOCIAL MEDIA

    • LinkedIn, external URL, opens in a new window
    • , external URL, opens in a new window
    • Facebook, external URL, opens in a new window
    • Instagram, external URL, opens in a new window
    • YouTube, external URL, opens in a new window

    SCILOG

    • Scilog — The science magazine of the Austrian Science Fund (FWF)
  • elane login, external URL, opens in a new window
  • Scilog external URL, opens in a new window
  • de Wechsle zu Deutsch

  

The lattice discrepancy of large domains

The lattice discrepancy of large domains

Werner Georg Nowak (ORCID: )
  • Grant DOI 10.55776/P20847
  • Funding program Principal Investigator Projects
  • Status ended
  • Start February 1, 2009
  • End January 31, 2012
  • Funding amount € 170,667
  • Project website

Disciplines

Mathematics (100%)

Keywords

    Lattice discrepancy, Lattice points, Gaussian curvature, Asymptotic formulars, Arithmetric functions, Large bodies

Abstract Final report

Let B be a body in s-dimensional Euclidean space with smooth boundary throughout, and let t be a large real parameter by which the body B is dilated ("blown up"). The number of integer points in the enlarged body tB is approximated in first order by the volume of tB. The question for the error involved in this approximation - the so- called "lattice point discrepancy" - has created a deep and prolific mathematical theory. In the planar case (s = 2), the situation is comparatively well understood, as well as for bodies in three-dimensional space that are sort of "egg-shaped" (i.e., connvex with smooth boundary of nonzero curvature throghout, in mathematical terms). Therefore, the main objective of the project submitted is to focus on the most explicit deviation from convexity that a body can have, namely a "dent", the boundary being still smooth. It is expected that there will be obtained rather precise asymptotic formulas for the lattice discrepancy. These investigations are to be carried for in dimension 3 and bigger. The whole theme is a natural and central question of multivariate analysis. It can be viewed as sort of a basic science for multidimensional numerical integration, it has connections to Fourier theory, to the classic analytic theory of special arithmetic functions, to Diophantine equations, and to the theory of linear operators. Furthermore, there are even interactions, resp., applications to quantum physics and to crystallography.

The main issue of the project was to gain more precise insight about the asymptotic behavior of the number of number of integer points in large domains in the plane and in space, in particular about the difference ("discrepancy") between this number and the area, resp., volume of the domain under consideration. First of all, the tools and methods available for this type of questions have been substantially improved and refined. In the sequel, the results achieved have been applied to different special bodies. To mention just two examples, the ellipsoid of rotation and the three-dimensional torus ("doughnut") have been deal with under this aspect. Furthermore, it turned out that the methods developed permitted applications to problems in other mathematical disciplines, which at least in a far sense are based on an enumeration of points with integer coordinates. Last but not least, it may be mentioned that a new and fairly precise formula for the number of integer points in an arbitrary circular disk was used to carry out computer calculations which determined a certain mathematical constant (the so-called Masser-Gramain constant) with much higher precision than it was possible before.

Research institution(s)
  • Universität für Bodenkultur Wien - 100%

Discovering
what
matters.

Newsletter

FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

Contact

Austrian Science Fund (FWF)
Georg-Coch-Platz 2
(Entrance Wiesingerstraße 4)
1010 Vienna

office(at)fwf.ac.at
+43 1 505 67 40

General information

  • Job Openings
  • Jobs at FWF
  • Press
  • Philanthropy
  • scilog
  • FWF Office
  • Social Media Directory
  • LinkedIn, external URL, opens in a new window
  • , external URL, opens in a new window
  • Facebook, external URL, opens in a new window
  • Instagram, external URL, opens in a new window
  • YouTube, external URL, opens in a new window
  • Cookies
  • Whistleblowing/Complaints Management
  • Accessibility Statement
  • Data Protection
  • Acknowledgements
  • IFG-Form
  • Social Media Directory
  • © Österreichischer Wissenschaftsfonds FWF
© Österreichischer Wissenschaftsfonds FWF