• Skip to content (access key 1)
  • Skip to search (access key 7)
FWF — Austrian Science Fund
  • Go to overview page Discover

    • Research Radar
      • Research Radar Archives 1974–1994
    • Discoveries
      • Emmanuelle Charpentier
      • Adrian Constantin
      • Monika Henzinger
      • Ferenc Krausz
      • Wolfgang Lutz
      • Walter Pohl
      • Christa Schleper
      • Elly Tanaka
      • Anton Zeilinger
    • Impact Stories
      • Verena Gassner
      • Wolfgang Lechner
      • Georg Winter
    • scilog Magazine
    • Austrian Science Awards
      • FWF Wittgenstein Awards
      • FWF ASTRA Awards
      • FWF START Awards
      • Award Ceremony
    • excellent=austria
      • Clusters of Excellence
      • Emerging Fields
    • In the Spotlight
      • 40 Years of Erwin Schrödinger Fellowships
      • Quantum Austria
    • Dialogs and Talks
      • think.beyond Summit
    • Knowledge Transfer Events
    • E-Book Library
  • Go to overview page Funding

    • Portfolio
      • excellent=austria
        • Clusters of Excellence
        • Emerging Fields
      • Projects
        • Principal Investigator Projects
        • Principal Investigator Projects International
        • Clinical Research
        • 1000 Ideas
        • Arts-Based Research
        • FWF Wittgenstein Award
      • Careers
        • ESPRIT
        • FWF ASTRA Awards
        • Erwin Schrödinger
        • doc.funds
        • doc.funds.connect
      • Collaborations
        • Specialized Research Groups
        • Special Research Areas
        • Research Groups
        • International – Multilateral Initiatives
        • #ConnectingMinds
      • Communication
        • Top Citizen Science
        • Science Communication
        • Book Publications
        • Digital Publications
        • Open-Access Block Grant
      • Subject-Specific Funding
        • AI Mission Austria
        • Belmont Forum
        • ERA-NET HERA
        • ERA-NET NORFACE
        • ERA-NET QuantERA
        • ERA-NET TRANSCAN
        • Alternative Methods to Animal Testing
        • European Partnership BE READY
        • European Partnership Biodiversa+
        • European Partnership BrainHealth
        • European Partnership ERA4Health
        • European Partnership ERDERA
        • European Partnership EUPAHW
        • European Partnership FutureFoodS
        • European Partnership OHAMR
        • European Partnership PerMed
        • European Partnership Water4All
        • Gottfried and Vera Weiss Award
        • LUKE – Ukraine
        • netidee SCIENCE
        • Herzfelder Foundation Projects
        • Quantum Austria
        • Rückenwind Funding Bonus
        • WE&ME Award
        • Zero Emissions Award
      • International Collaborations
        • Belgium/Flanders
        • Germany
        • France
        • Italy/South Tyrol
        • Japan
        • Korea
        • Luxembourg
        • Poland
        • Switzerland
        • Slovenia
        • Taiwan
        • Tyrol–South Tyrol–Trentino
        • Czech Republic
        • Hungary
    • Step by Step
      • Find Funding
      • Submitting Your Application
      • International Peer Review
      • Funding Decisions
      • Carrying out Your Project
      • Closing Your Project
      • Further Information
        • Integrity and Ethics
        • Inclusion
        • Applying from Abroad
        • Personnel Costs
        • PROFI
        • Final Project Reports
        • Final Project Report Survey
    • FAQ
      • Project Phase PROFI
      • Project Phase Ad Personam
      • Expiring Programs
        • Elise Richter and Elise Richter PEEK
        • FWF START Awards
  • Go to overview page About Us

    • Mission Statement
    • FWF Video
    • Values
    • Facts and Figures
    • Annual Report
    • What We Do
      • Research Funding
        • Matching Funds Initiative
      • International Collaborations
      • Studies and Publications
      • Equal Opportunities and Diversity
        • Objectives and Principles
        • Measures
        • Creating Awareness of Bias in the Review Process
        • Terms and Definitions
        • Your Career in Cutting-Edge Research
      • Open Science
        • Open-Access Policy
          • Open-Access Policy for Peer-Reviewed Publications
          • Open-Access Policy for Peer-Reviewed Book Publications
          • Open-Access Policy for Research Data
        • Research Data Management
        • Citizen Science
        • Open Science Infrastructures
        • Open Science Funding
      • Evaluations and Quality Assurance
      • Academic Integrity
      • Science Communication
      • Philanthropy
      • Sustainability
    • History
    • Legal Basis
    • Organization
      • Executive Bodies
        • Executive Board
        • Supervisory Board
        • Assembly of Delegates
        • Scientific Board
        • Juries
      • FWF Office
    • Jobs at FWF
  • Go to overview page News

    • News
    • Press
      • Logos
    • Calendar
      • Post an Event
      • FWF Informational Events
    • Job Openings
      • Enter Job Opening
    • Newsletter
  • Discovering
    what
    matters.

    FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

    SOCIAL MEDIA

    • LinkedIn, external URL, opens in a new window
    • , external URL, opens in a new window
    • Facebook, external URL, opens in a new window
    • Instagram, external URL, opens in a new window
    • YouTube, external URL, opens in a new window

    SCILOG

    • Scilog — The science magazine of the Austrian Science Fund (FWF)
  • elane login, external URL, opens in a new window
  • Scilog external URL, opens in a new window
  • de Wechsle zu Deutsch

  

Dependence Modeling for Credit Spreads and Interest Rate Term Structures

Dependence Modeling for Credit Spreads and Interest Rate Term Structures

Uwe Schmock (ORCID: 0000-0001-9588-8249)
  • Grant DOI 10.55776/P25216
  • Funding program Principal Investigator Projects
  • Status ended
  • Start June 1, 2013
  • End December 31, 2017
  • Funding amount € 311,776
  • Project website

Disciplines

Mathematics (100%)

Keywords

    Credit Risk Modeling, Interest Rate Modeling, Dependence Modeling, Stochastic Differential Equations, Jacobi Processes, Affine Processes

Abstract Final report

Credit spread (or yield spread) of a given corporate bond is defined to be the difference between its yield and the yield of a government bond, or more generally (and more accurately after the recent debt crisis) a reference bond, which is assumed to be risk-free and has the same time to maturity. The raison d`etre of credit spreads is the risk of default inherent in corporate bonds, in which case the bond holders receives only partial payment or no payment at all. Therefore, in order to price corporate bonds, or more generally any defaultable bond and other credit sensitive instruments, it is necessary to consider the evolution of credit spreads and the risk-free term structure, as well as the correlation structure between these assuming that both are given stochastically. In a structural credit risk framework, as it is documented by Longstaff and Schwartz (1995), there is an unambiguous economic relation between the credit spread and the risk-free rate, manifesting itself as the negative correlation. On the other hand, in a reduced-form setting, this kind of negative correlation is captured by imposing negative instantaneous correlation between the state variables that drives the defaultable and non-defaultable term structures. However, in a setting where the risk-free rate and credit spread are given by affine diffusions although one has the analytical tractability of the bond prices, due to the admissibility conditions, one cannot simultaneously have a positive spread (or intensity) and risk-free rate while sustaining negatively correlated increments of both. Non-negativity of the spread is a great concern due to the impossibility to construct Cox process with a negative intensity rate. Similarly, it can be shown that in the presence of negative nominal interest rates, arbitrage opportunities arise. Although, non-positivity of the interest rates and intensity process are ignored in the literature by assuming that its probability is close to zero, it might be a concern especially in term-structure modeling and complex derivative pricing. Motivated by the above discussion, the project has these main objectives: to come up with a tractable defaultable term-structure model in a reduced-form setting that takes care of empirical stylized facts (negative instantaneous correlation between credit spread and risk-free rate) coherent with the mathematical and economical facts (non-negative intensity and risk-free rates) with an aim towards better understanding of the credit markets. to understand better in a general setting the notion of instantaneous correlation in term-structure and credit risk models and its implications in credit sensitive derivative pricing.

Mit diesem Forschungsprojekt stellen wir ein neuartiges dynamisches Modell für die Laufzeitstruktur von Kreditausfall- und Zinsintensitäten zur Verfügung, das eine negative augenblickliche Korrelation zwischen den Differenzen der Kreditausfallintensitäten (credit spreads) und der risikofreien Zinsintensität erfasst, wie sie in der empirischen Literatur dokumentiert ist, und gleichzeitig die Positivität der Ausfallintensitätsdifferenzen und des risikofreien Zinssatzes aufrechterhält. Im einfachsten Fall ist die Zinsstrukturkurve eine Grafik, die das Verhältnis zwischen kurz- und langfristigen Zinssätzen darstellt, insbesondere bei Staatspapieren (oft als ausfallfrei betrachtet) oder Schuldtiteln von Unternehmen (ausfallgefährdet). Durch die Beobachtung der Zinskurve, genauer gesagt der Form der Zinskurve, können die Wirtschaftsakteure Rückschlüsse auf die Markterwartung für die Zukunft der Wirtschaft ziehen. So kann die Zinsstrukturkurve als einer der wichtigsten Anhaltspunkte für Wirtschaftsakteure angesehen werden um ihre Entscheidungen zu treffen (d.h. wenn Zentralbanker ihre Geldpolitik festlegen, wenn Einzelpersonen ihre Ersparnisse bei einer Bank anlegen oder beschließen, einen Hypothekarkredit aufzunehmen, oder wenn Versicherungsgesellschaften ihre Prämien festlegen usw.). Der Renditeaufschlag einer Unternehmensanleihe ist definiert als die Differenz zwischen ihrer Rendite und der Rendite einer Staatsanleihe oder allgemeiner (und genauer nach der jüngsten Schuldenkrise) einer Referenzanleihe, die als risikofrei gilt und die gleiche Laufzeit hat. Die Rechtfertigung für den Renditeaufschlag ist das Risiko des Zahlungsausfalls von Unternehmensanleihen, wobei Anleihegläubiger nur eine Teilzahlung oder gar keine Rückzahlung erhalten. Um Unternehmensanleihen oder generell alle ausfallgefährdeten Anleihen und andere kreditrisikosensitive Instrumente zu bewerten, ist es daher notwendig, die Dynamik der Laufzeitstruktur der Kreditausfallintensitäten und der risikolosen Zinsintensität sowie die Korrelationsstruktur zwischen diesen Prozessen unter der Bedingung zu berücksichtigen, dass beide stochastisch zu modellieren sind.

Research institution(s)
  • Technische Universität Wien - 100%
International project participants
  • Monique Jeanblanc, Université d ´Evry - France
  • Wolfgang J. Runggaldier, Università degli studi di Padova - Italy

Research Output

  • 31 Citations
  • 5 Publications
Publications
  • 2015
    Title Small time central limit theorems for semimartingales with applications
    DOI 10.1080/17442508.2014.1000326
    Type Journal Article
    Author Gerhold S
    Journal Stochastics An International Journal of Probability and Stochastic Processes
    Pages 723-746
    Link Publication
  • 2018
    Title Geometry of distribution-constrained optimal stopping problems
    DOI 10.1007/s00440-017-0805-x
    Type Journal Article
    Author Beiglböck M
    Journal Probability Theory and Related Fields
    Pages 71-101
    Link Publication
  • 2017
    Title Actuarial Applications and Estimation of Extended CreditRisk+
    DOI 10.3390/risks5020023
    Type Journal Article
    Author Hirz J
    Journal Risks
    Pages 23
    Link Publication
  • 2019
    Title Portfolio Optimization for a Large Investor Controlling Market Sentiment Under Partial Information
    DOI 10.1137/17m1134317
    Type Journal Article
    Author Altay S
    Journal SIAM Journal on Financial Mathematics
    Pages 512-546
    Link Publication
  • 2015
    Title Itô's formula for finite variation Lévy processes: The case of non-smooth functions
    DOI 10.1016/j.jmaa.2015.05.025
    Type Journal Article
    Author Okhrati R
    Journal Journal of Mathematical Analysis and Applications
    Pages 1163-1174
    Link Publication

Discovering
what
matters.

Newsletter

FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

Contact

Austrian Science Fund (FWF)
Georg-Coch-Platz 2
(Entrance Wiesingerstraße 4)
1010 Vienna

office(at)fwf.ac.at
+43 1 505 67 40

General information

  • Job Openings
  • Jobs at FWF
  • Press
  • Philanthropy
  • scilog
  • FWF Office
  • Social Media Directory
  • LinkedIn, external URL, opens in a new window
  • , external URL, opens in a new window
  • Facebook, external URL, opens in a new window
  • Instagram, external URL, opens in a new window
  • YouTube, external URL, opens in a new window
  • Cookies
  • Whistleblowing/Complaints Management
  • Accessibility Statement
  • Data Protection
  • Acknowledgements
  • IFG-Form
  • Social Media Directory
  • © Österreichischer Wissenschaftsfonds FWF
© Österreichischer Wissenschaftsfonds FWF