• Skip to content (access key 1)
  • Skip to search (access key 7)
FWF — Austrian Science Fund
  • Go to overview page Discover

    • Research Radar
      • Research Radar Archives 1974–1994
    • Discoveries
      • Emmanuelle Charpentier
      • Adrian Constantin
      • Monika Henzinger
      • Ferenc Krausz
      • Wolfgang Lutz
      • Walter Pohl
      • Christa Schleper
      • Elly Tanaka
      • Anton Zeilinger
    • Impact Stories
      • Verena Gassner
      • Wolfgang Lechner
      • Georg Winter
    • scilog Magazine
    • Austrian Science Awards
      • FWF Wittgenstein Awards
      • FWF ASTRA Awards
      • FWF START Awards
      • Award Ceremony
    • excellent=austria
      • Clusters of Excellence
      • Emerging Fields
    • In the Spotlight
      • 40 Years of Erwin Schrödinger Fellowships
      • Quantum Austria
    • Dialogs and Talks
      • think.beyond Summit
    • Knowledge Transfer Events
    • E-Book Library
  • Go to overview page Funding

    • Portfolio
      • excellent=austria
        • Clusters of Excellence
        • Emerging Fields
      • Projects
        • Principal Investigator Projects
        • Principal Investigator Projects International
        • Clinical Research
        • 1000 Ideas
        • Arts-Based Research
        • FWF Wittgenstein Award
      • Careers
        • ESPRIT
        • FWF ASTRA Awards
        • Erwin Schrödinger
        • doc.funds
        • doc.funds.connect
      • Collaborations
        • Specialized Research Groups
        • Special Research Areas
        • Research Groups
        • International – Multilateral Initiatives
        • #ConnectingMinds
      • Communication
        • Top Citizen Science
        • Science Communication
        • Book Publications
        • Digital Publications
        • Open-Access Block Grant
      • Subject-Specific Funding
        • AI Mission Austria
        • Belmont Forum
        • ERA-NET HERA
        • ERA-NET NORFACE
        • ERA-NET QuantERA
        • ERA-NET TRANSCAN
        • Alternative Methods to Animal Testing
        • European Partnership BE READY
        • European Partnership Biodiversa+
        • European Partnership BrainHealth
        • European Partnership ERA4Health
        • European Partnership ERDERA
        • European Partnership EUPAHW
        • European Partnership FutureFoodS
        • European Partnership OHAMR
        • European Partnership PerMed
        • European Partnership Water4All
        • Gottfried and Vera Weiss Award
        • LUKE – Ukraine
        • netidee SCIENCE
        • Herzfelder Foundation Projects
        • Quantum Austria
        • Rückenwind Funding Bonus
        • WE&ME Award
        • Zero Emissions Award
      • International Collaborations
        • Belgium/Flanders
        • Germany
        • France
        • Italy/South Tyrol
        • Japan
        • Korea
        • Luxembourg
        • Poland
        • Switzerland
        • Slovenia
        • Taiwan
        • Tyrol–South Tyrol–Trentino
        • Czech Republic
        • Hungary
    • Step by Step
      • Find Funding
      • Submitting Your Application
      • International Peer Review
      • Funding Decisions
      • Carrying out Your Project
      • Closing Your Project
      • Further Information
        • Integrity and Ethics
        • Inclusion
        • Applying from Abroad
        • Personnel Costs
        • PROFI
        • Final Project Reports
        • Final Project Report Survey
    • FAQ
      • Project Phase PROFI
      • Project Phase Ad Personam
      • Expiring Programs
        • Elise Richter and Elise Richter PEEK
        • FWF START Awards
  • Go to overview page About Us

    • Mission Statement
    • FWF Video
    • Values
    • Facts and Figures
    • Annual Report
    • What We Do
      • Research Funding
        • Matching Funds Initiative
      • International Collaborations
      • Studies and Publications
      • Equal Opportunities and Diversity
        • Objectives and Principles
        • Measures
        • Creating Awareness of Bias in the Review Process
        • Terms and Definitions
        • Your Career in Cutting-Edge Research
      • Open Science
        • Open-Access Policy
          • Open-Access Policy for Peer-Reviewed Publications
          • Open-Access Policy for Peer-Reviewed Book Publications
          • Open-Access Policy for Research Data
        • Research Data Management
        • Citizen Science
        • Open Science Infrastructures
        • Open Science Funding
      • Evaluations and Quality Assurance
      • Academic Integrity
      • Science Communication
      • Philanthropy
      • Sustainability
    • History
    • Legal Basis
    • Organization
      • Executive Bodies
        • Executive Board
        • Supervisory Board
        • Assembly of Delegates
        • Scientific Board
        • Juries
      • FWF Office
    • Jobs at FWF
  • Go to overview page News

    • News
    • Press
      • Logos
    • Calendar
      • Post an Event
      • FWF Informational Events
    • Job Openings
      • Enter Job Opening
    • Newsletter
  • Discovering
    what
    matters.

    FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

    SOCIAL MEDIA

    • LinkedIn, external URL, opens in a new window
    • , external URL, opens in a new window
    • Facebook, external URL, opens in a new window
    • Instagram, external URL, opens in a new window
    • YouTube, external URL, opens in a new window

    SCILOG

    • Scilog — The science magazine of the Austrian Science Fund (FWF)
  • elane login, external URL, opens in a new window
  • Scilog external URL, opens in a new window
  • de Wechsle zu Deutsch

  

Non-Archimedean Geometry and Analysis

Non-Archimedean Geometry and Analysis

Paolo Giordano (ORCID: 0000-0001-7653-1017)
  • Grant DOI 10.55776/P25311
  • Funding program Principal Investigator Projects
  • Status ended
  • Start June 1, 2013
  • End May 31, 2016
  • Funding amount € 347,949
  • Project website

Disciplines

Mathematics (100%)

Keywords

    Non-Archimedean Mathematics, Fermat reals, Generalized functions and ultrafuntions, Infinite dimensional spaces, Classical Perturbation Methods, Stochastic Differentials

Abstract Final report

The general aim of the proposed project is to develop several branches of non-Archimedean Geometry and Analysis, i.e. topics where the role of a ring containing infinitesimals is central. The greatest part of the project concerns the intrinsic study, using the infinitesimal language of the ring of Fermat reals, of classical topics of Differential Geometry of smooth manifolds, infinite dimensional spaces of smooth mappings and spaces with singular subsets. Since at singular points some geometrical quantities can be infinite, e.g. curvature, we will need to develop a theory of infinities as reciprocals of nilpotent infinitesimals. This also permits to introduce generalized functions as quasi-standard smooth functions, i.e. as ordinary smooth functions with some infinitesimal or infinite parameter. We also aim at finding the relationship between these generalized functions and Benci`s theory of ultrafunctions and at transferring to and improving for ultrafunctions some of the results of Colombeau theory. In the third part of the project, we want to show that nilpotent infinitesimals in the ring of Fermat reals can be used as a new framework for the formalization of several methods used in perturbation theory. In the last part of the project, we aim at generalizing the construction of the ring of Fermat reals to a stochastic context using the notion of stochastic little-oh symbol between stochastic processes and to develop limit theorems and first properties of stochastic processes in non-Archimedean probability. The main aim of this part is to arrive at a mathematical structure where to formalize several informal calculations carried out with stochastic differentials both in Physics and in Economics and to a new approach to Probability Theory which is more general and, at the same time, simpler than the classical one.

The general aim of this project was to develop several branches of non-Archimedean Geometry and Analysis, i.e. topics where the role of infinitesimals numbers is central. This general aim has been realized, even if some particular topic revealed more difficulties than expected. The greatest part of the project concerns the intrinsic study, using the infinitesimal language of the ring of Fermat reals, of classical topics of Differential Geometry of smooth manifolds, infinite dimensional spaces of smooth mappings and spaces with singular subsets. This has been faced by defining and studying a general way to relate the standard world (without infinitesimals) with our new universe which contains infinitesimal numbers. This general way is a suitable functor between these two universes (categories), and we strongly generalize the old definition of Fermat functor into a better version having improved preservation properties.We also advanced the theory of ultrafunctions, generalized the notion of Colombeau algebra and deepened notions of combinatorial number theory. All these theories are framed in a non-Archimedean context, i.e. they use different forms of infinitesimal and infinite numbers other than the usual real numbers.The main result of this project has been to arrive at mathematical structures where to formalize several informal calculations carried out with infinitesimals both in Mathematics and in Physics, but using a modern and rigorous mathematical language.

Research institution(s)
  • Universität Wien - 100%

Research Output

  • 185 Citations
  • 44 Publications
Publications
  • 2016
    Title The Fermat functors.
    Type Journal Article
    Author Wu E
  • 2016
    Title F-finite embeddabilities of sets and ultrafilters
    DOI 10.1007/s00153-016-0489-4
    Type Journal Article
    Author Luperi Baglini L
    Journal Archive for Mathematical Logic
    Pages 705-734
    Link Publication
  • 2016
    Title Calculus in the ring of Fermat reals, Part I: Integral calculus
    DOI 10.1016/j.aim.2015.11.021
    Type Journal Article
    Author Giordano P
    Journal Advances in Mathematics
    Pages 888-927
    Link Publication
  • 2015
    Title Unifying order structures for Colombeau algebras
    DOI 10.1002/mana.201400277
    Type Journal Article
    Author Giordano P
    Journal Mathematische Nachrichten
    Pages 1286-1302
    Link Publication
  • 2015
    Title Homological algebra for diffeological vector spaces
    DOI 10.4310/hha.2015.v17.n1.a17
    Type Journal Article
    Author Wu E
    Journal Homology, Homotopy and Applications
    Pages 339-376
    Link Publication
  • 2017
    Title The classical theory of calculus of variations for generalized functions
    DOI 10.1515/anona-2017-0150
    Type Journal Article
    Author Lecke A
    Journal Advances in Nonlinear Analysis
    Pages 779-808
    Link Publication
  • 2017
    Title Inverse Function Theorems for Generalized Smooth Functions
    DOI 10.1007/978-3-319-51911-1_7
    Type Book Chapter
    Author Giordano P
    Publisher Springer Nature
    Pages 95-114
  • 2017
    Title Generalized solutions in PDEs and the Burgers' equation
    DOI 10.1016/j.jde.2017.07.034
    Type Journal Article
    Author Benci V
    Journal Journal of Differential Equations
    Pages 6916-6952
    Link Publication
  • 2017
    Title A Convenient Notion of Compact Set for Generalized Functions
    DOI 10.1017/s0013091516000559
    Type Journal Article
    Author Giordano P
    Journal Proceedings of the Edinburgh Mathematical Society
    Pages 57-92
    Link Publication
  • 2016
    Title A generalization of Gauss’ divergence theorem
    DOI 10.1090/conm/666/13335
    Type Book Chapter
    Author Benci V
    Publisher American Mathematical Society (AMS)
    Pages 69-84
    Link Publication
  • 2018
    Title Standardization of a protocol for shotgun proteomic analysis of saliva
    DOI 10.1590/1678-7757-2017-0561
    Type Journal Article
    Author Ventura T
    Journal Journal of Applied Oral Science
    Link Publication
  • 2022
    Title Rado equations solved by linear combinations of idempotent ultrafilters
    DOI 10.1016/j.topol.2021.107897
    Type Journal Article
    Author Baglini L
    Journal Topology and its Applications
    Pages 107897
    Link Publication
  • 2020
    Title Rado equations solved by linear combinations of idempotent ultrafilters
    DOI 10.48550/arxiv.2011.13722
    Type Preprint
    Author Baglini L
  • 2014
    Title A generalization of Gauss' divergence Theorem.
    Type Journal Article
    Author Benci V
    Journal volume dedicated to Professor Hugo Beirao da Veiga
  • 2014
    Title Generalized functions beyond distributions
    DOI 10.1007/s40065-014-0114-5
    Type Journal Article
    Author Benci V
    Journal Arabian Journal of Mathematics
    Pages 231-253
    Link Publication
  • 2012
    Title Basic properties of ultrafunctions.
    Type Book Chapter
  • 2014
    Title A model problem for ultrafunctions.
    Type Journal Article
    Author Benci V
  • 2014
    Title Ultrafunctions and applications
    DOI 10.3934/dcdss.2014.7.593
    Type Journal Article
    Author Benci V
    Journal Discrete and Continuous Dynamical Systems - S
    Pages 593-616
    Link Publication
  • 2014
    Title A non-archimedean algebra and the Schwartz impossibility theorem
    DOI 10.1007/s00605-014-0647-x
    Type Journal Article
    Author Benci V
    Journal Monatshefte für Mathematik
    Pages 503-520
  • 2014
    Title Ultrafilters maximal for finite embeddability
    DOI 10.4115/jla.2014.6.6
    Type Journal Article
    Author Luperi Baglini L
    Journal Journal of Logic and Analysis
    Pages 1-16
    Link Publication
  • 2014
    Title Basic Properties of Ultrafunctions
    DOI 10.1007/978-3-319-04214-5_4
    Type Book Chapter
    Author Benci V
    Publisher Springer Nature
    Pages 61-86
  • 2016
    Title The Fermat Functors, Part I: The theory
    DOI 10.48550/arxiv.1603.09266
    Type Preprint
    Author Wu E
  • 2016
    Title Inverse Function Theorems for Generalized Smooth Functions
    DOI 10.48550/arxiv.1602.00013
    Type Preprint
    Author Giordano P
  • 2016
    Title The classical theory of calculus of variations for generalized functions
    DOI 10.48550/arxiv.1608.03080
    Type Preprint
    Author Lecke A
  • 2016
    Title Convergences and the Intermediate Value Property in Fermat Reals
    DOI 10.48550/arxiv.1603.09224
    Type Preprint
    Author Wu E
  • 2016
    Title The category of Colombeau algebras
    DOI 10.1007/s00605-016-0990-1
    Type Journal Article
    Author Luperi Baglini L
    Journal Monatshefte für Mathematik
    Pages 649-674
    Link Publication
  • 2016
    Title A Topological Approach to Non-Archimedean Mathematics
    DOI 10.1007/978-3-319-41538-3_2
    Type Book Chapter
    Author Benci V
    Publisher Springer Nature
    Pages 17-40
  • 2015
    Title The category of Colombeau algebras
    DOI 10.48550/arxiv.1507.02413
    Type Preprint
    Author Baglini L
  • 2015
    Title A nonstandard technique in combinatorial number theory
    DOI 10.1016/j.ejc.2015.02.010
    Type Journal Article
    Author Baglini L
    Journal European Journal of Combinatorics
    Pages 71-80
    Link Publication
  • 2015
    Title Asymptotic gauges: Generalization of Colombeau type algebras
    DOI 10.1002/mana.201400278
    Type Journal Article
    Author Giordano P
    Journal Mathematische Nachrichten
    Pages 247-274
    Link Publication
  • 2015
    Title Calculus in the ring of Fermat reals Part I: Integral calculus
    DOI 10.48550/arxiv.1503.05965
    Type Preprint
    Author Giordano P
  • 2015
    Title Categorical frameworks for generalized functions
    DOI 10.1007/s40065-015-0126-9
    Type Journal Article
    Author Giordano P
    Journal Arabian Journal of Mathematics
    Pages 301-328
    Link Publication
  • 2013
    Title Partition regularity of nonlinear polynomials: a nonstandard approach
    DOI 10.1007/978-88-7642-475-5_65
    Type Book Chapter
    Author Baglini L
    Publisher Springer Nature
    Pages 407-412
    Link Publication
  • 2014
    Title Algebraic Approach to Colombeau Theory
    DOI 10.48550/arxiv.1405.7341
    Type Preprint
    Author Todorov T
  • 2014
    Title F-finite embeddabilities of sets and ultrafilters
    DOI 10.48550/arxiv.1401.6518
    Type Preprint
    Author Baglini L
  • 2014
    Title A topological approach to non-Archimedean Mathematics
    DOI 10.48550/arxiv.1412.2223
    Type Preprint
    Author Benci V
  • 2014
    Title A convenient notion of compact set for generalized functions
    DOI 10.48550/arxiv.1411.7292
    Type Preprint
    Author Giordano P
  • 2014
    Title A nonstandard technique in combinatorial number theory
    DOI 10.48550/arxiv.1401.5273
    Type Preprint
    Author Baglini L
  • 2014
    Title Generalized Functions Beyond Distributions
    DOI 10.48550/arxiv.1401.5270
    Type Preprint
    Author Benci V
  • 2014
    Title A non-archimedean Algebra and the Schwartz impossibility theorem
    DOI 10.48550/arxiv.1401.0475
    Type Preprint
    Author Benci V
  • 2014
    Title Ultrafilters maximal for finite embeddability
    DOI 10.48550/arxiv.1401.4977
    Type Preprint
    Author Baglini L
  • 2014
    Title Asymptotic gauges: generalization of Colombeau type algebras
    DOI 10.48550/arxiv.1408.1585
    Type Preprint
    Author Giordano P
  • 2014
    Title A generalization of Gauss' divergence theorem
    DOI 10.48550/arxiv.1406.4349
    Type Preprint
    Author Benci V
  • 2014
    Title Categorical frameworks for generalized functions
    DOI 10.48550/arxiv.1402.4839
    Type Preprint
    Author Giordano P

Discovering
what
matters.

Newsletter

FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

Contact

Austrian Science Fund (FWF)
Georg-Coch-Platz 2
(Entrance Wiesingerstraße 4)
1010 Vienna

office(at)fwf.ac.at
+43 1 505 67 40

General information

  • Job Openings
  • Jobs at FWF
  • Press
  • Philanthropy
  • scilog
  • FWF Office
  • Social Media Directory
  • LinkedIn, external URL, opens in a new window
  • , external URL, opens in a new window
  • Facebook, external URL, opens in a new window
  • Instagram, external URL, opens in a new window
  • YouTube, external URL, opens in a new window
  • Cookies
  • Whistleblowing/Complaints Management
  • Accessibility Statement
  • Data Protection
  • Acknowledgements
  • IFG-Form
  • Social Media Directory
  • © Österreichischer Wissenschaftsfonds FWF
© Österreichischer Wissenschaftsfonds FWF