• Skip to content (access key 1)
  • Skip to search (access key 7)
FWF — Austrian Science Fund
  • Go to overview page Discover

    • Research Radar
      • Research Radar Archives 1974–1994
    • Discoveries
      • Emmanuelle Charpentier
      • Adrian Constantin
      • Monika Henzinger
      • Ferenc Krausz
      • Wolfgang Lutz
      • Walter Pohl
      • Christa Schleper
      • Elly Tanaka
      • Anton Zeilinger
    • Impact Stories
      • Verena Gassner
      • Wolfgang Lechner
      • Georg Winter
    • scilog Magazine
    • Austrian Science Awards
      • FWF Wittgenstein Awards
      • FWF ASTRA Awards
      • FWF START Awards
      • Award Ceremony
    • excellent=austria
      • Clusters of Excellence
      • Emerging Fields
    • In the Spotlight
      • 40 Years of Erwin Schrödinger Fellowships
      • Quantum Austria
    • Dialogs and Talks
      • think.beyond Summit
    • Knowledge Transfer Events
    • E-Book Library
  • Go to overview page Funding

    • Portfolio
      • excellent=austria
        • Clusters of Excellence
        • Emerging Fields
      • Projects
        • Principal Investigator Projects
        • Principal Investigator Projects International
        • Clinical Research
        • 1000 Ideas
        • Arts-Based Research
        • FWF Wittgenstein Award
      • Careers
        • ESPRIT
        • FWF ASTRA Awards
        • Erwin Schrödinger
        • doc.funds
        • doc.funds.connect
      • Collaborations
        • Specialized Research Groups
        • Special Research Areas
        • Research Groups
        • International – Multilateral Initiatives
        • #ConnectingMinds
      • Communication
        • Top Citizen Science
        • Science Communication
        • Book Publications
        • Digital Publications
        • Open-Access Block Grant
      • Subject-Specific Funding
        • AI Mission Austria
        • Belmont Forum
        • ERA-NET HERA
        • ERA-NET NORFACE
        • ERA-NET QuantERA
        • ERA-NET TRANSCAN
        • Alternative Methods to Animal Testing
        • European Partnership Biodiversa+
        • European Partnership BrainHealth
        • European Partnership ERA4Health
        • European Partnership ERDERA
        • European Partnership EUPAHW
        • European Partnership FutureFoodS
        • European Partnership OHAMR
        • European Partnership PerMed
        • European Partnership Water4All
        • Gottfried and Vera Weiss Award
        • netidee SCIENCE
        • Herzfelder Foundation Projects
        • Quantum Austria
        • Rückenwind Funding Bonus
        • WE&ME Award
        • Zero Emissions Award
      • International Collaborations
        • Belgium/Flanders
        • Germany
        • France
        • Italy/South Tyrol
        • Japan
        • Luxembourg
        • Poland
        • Switzerland
        • Slovenia
        • Taiwan
        • Tyrol–South Tyrol–Trentino
        • Czech Republic
        • Hungary
    • Step by Step
      • Find Funding
      • Submitting Your Application
      • International Peer Review
      • Funding Decisions
      • Carrying out Your Project
      • Closing Your Project
      • Further Information
        • Integrity and Ethics
        • Inclusion
        • Applying from Abroad
        • Personnel Costs
        • PROFI
        • Final Project Reports
        • Final Project Report Survey
    • FAQ
      • Project Phase PROFI
      • Project Phase Ad Personam
      • Expiring Programs
        • Elise Richter and Elise Richter PEEK
        • FWF START Awards
  • Go to overview page About Us

    • Mission Statement
    • FWF Video
    • Values
    • Facts and Figures
    • Annual Report
    • What We Do
      • Research Funding
        • Matching Funds Initiative
      • International Collaborations
      • Studies and Publications
      • Equal Opportunities and Diversity
        • Objectives and Principles
        • Measures
        • Creating Awareness of Bias in the Review Process
        • Terms and Definitions
        • Your Career in Cutting-Edge Research
      • Open Science
        • Open-Access Policy
          • Open-Access Policy for Peer-Reviewed Publications
          • Open-Access Policy for Peer-Reviewed Book Publications
          • Open-Access Policy for Research Data
        • Research Data Management
        • Citizen Science
        • Open Science Infrastructures
        • Open Science Funding
      • Evaluations and Quality Assurance
      • Academic Integrity
      • Science Communication
      • Philanthropy
      • Sustainability
    • History
    • Legal Basis
    • Organization
      • Executive Bodies
        • Executive Board
        • Supervisory Board
        • Assembly of Delegates
        • Scientific Board
        • Juries
      • FWF Office
    • Jobs at FWF
  • Go to overview page News

    • News
    • Press
      • Logos
    • Calendar
      • Post an Event
      • FWF Informational Events
    • Job Openings
      • Enter Job Opening
    • Newsletter
  • Discovering
    what
    matters.

    FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

    SOCIAL MEDIA

    • LinkedIn, external URL, opens in a new window
    • , external URL, opens in a new window
    • Facebook, external URL, opens in a new window
    • Instagram, external URL, opens in a new window
    • YouTube, external URL, opens in a new window

    SCILOG

    • Scilog — The science magazine of the Austrian Science Fund (FWF)
  • elane login, external URL, opens in a new window
  • Scilog external URL, opens in a new window
  • de Wechsle zu Deutsch

  

Rational curves via function field analytic number theory

Rational curves via function field analytic number theory

Timothy Daniel Browning (ORCID: 0000-0002-8314-0177)
  • Grant DOI 10.55776/P36278
  • Funding program Principal Investigator Projects
  • Status ended
  • Start December 1, 2022
  • End November 30, 2025
  • Funding amount € 360,748

Disciplines

Mathematics (100%)

Keywords

    Rational points, Rational Curves, Circle Method, Moduli Spaces, Function Fields

Abstract

Polynomial equations are the cornerstone of modern mathematics. When viewed over the integers, they define Diophantine equations, and questions about the solubility and density of integer solutions have been studied for millennia. When viewed over the complex numbers, they define algebraic varieties, whose classification is a key part of algebraic geometry today, but dates back to 19th Century and an Italian school of geometers. For many years it has been known that the geometry of a system of equations can have a strong influence on their arithmetic. However, in recent years, the flow of information has been reversed, with a surprising link discovered between the geometry of rational curves on higher-dimensional algebraic varieties and questions about the density of solutions to Diophantine equations over global fields of positive characteristic. The main aim of the proposal is to drive this connection forward, by refining a Fourier-analytic circle method approach to tackle central problems in algebraic geometry about moduli spaces of curves on suitable varieties.

Research institution(s)
  • Institute of Science and Technology Austria - ISTA - 100%
International project participants
  • Pankaj Vishe, Durham University

Research Output

  • 1 Citations
  • 12 Publications
Publications
  • 2025
    Title Pairs of commuting integer matrices
    DOI 10.1007/s00208-025-03285-5
    Type Journal Article
    Author Browning T
    Journal Mathematische Annalen
    Pages 1863-1880
    Link Publication
  • 2025
    Title Optimal sums of three cubes in Fq[t]
    DOI 10.1007/s00209-025-03765-z
    Type Journal Article
    Author Browning T
    Journal Mathematische Zeitschrift
    Pages 65
    Link Publication
  • 2025
    Title Integral points on cubic surfaces: heuristics and numerics
    DOI 10.1007/s00029-025-01074-1
    Type Journal Article
    Author Browning T
    Journal Selecta Mathematica
    Pages 81
    Link Publication
  • 2024
    Title Rational points on complete intersections of cubic and quadric hypersurfaces over Fq(t)$\mathbb {F}_q(t)$
    DOI 10.1112/jlms.12991
    Type Journal Article
    Author Glas J
    Journal Journal of the London Mathematical Society
    Link Publication
  • 2023
    Title Quartic polynomials in two variables do not represent all non-negative integers
    DOI 10.48550/arxiv.2307.05712
    Type Preprint
    Author Xiao S
  • 2023
    Title Paucity of rational points on fibrations with multiple fibres
    DOI 10.48550/arxiv.2310.01135
    Type Preprint
    Author Browning T
  • 2024
    Title Square-free values of random polynomials
    DOI 10.1016/j.jnt.2024.02.013
    Type Journal Article
    Author Browning T
    Journal Journal of Number Theory
    Pages 220-240
    Link Publication
  • 2024
    Title Strong divisibility sequences and sieve methods
    DOI 10.1112/mtk.12269
    Type Journal Article
    Author Browning T
    Journal Mathematika
    Link Publication
  • 2023
    Title Square-free values of random polynomials
    DOI 10.48550/arxiv.2305.15493
    Type Preprint
    Author Browning T
  • 2023
    Title Complete intersections of cubic and quadric hypersurfaces over $\mathbb{F}_q(t)$
    DOI 10.48550/arxiv.2306.02718
    Type Preprint
    Author Glas J
  • 2023
    Title Birch's theorem on forms in many variables with a Hessian condition
    DOI 10.48550/arxiv.2304.02620
    Type Preprint
    Author Yamagishi S
  • 2023
    Title A motivic circle method
    DOI 10.48550/arxiv.2304.09645
    Type Preprint
    Author Bilu M

Discovering
what
matters.

Newsletter

FWF-Newsletter Press-Newsletter Calendar-Newsletter Job-Newsletter scilog-Newsletter

Contact

Austrian Science Fund (FWF)
Georg-Coch-Platz 2
(Entrance Wiesingerstraße 4)
1010 Vienna

office(at)fwf.ac.at
+43 1 505 67 40

General information

  • Job Openings
  • Jobs at FWF
  • Press
  • Philanthropy
  • scilog
  • FWF Office
  • Social Media Directory
  • LinkedIn, external URL, opens in a new window
  • , external URL, opens in a new window
  • Facebook, external URL, opens in a new window
  • Instagram, external URL, opens in a new window
  • YouTube, external URL, opens in a new window
  • Cookies
  • Whistleblowing/Complaints Management
  • Accessibility Statement
  • Data Protection
  • Acknowledgements
  • IFG-Form
  • Social Media Directory
  • © Österreichischer Wissenschaftsfonds FWF
© Österreichischer Wissenschaftsfonds FWF