EUROCORES_EUROQUASAR_1.Call_QuDeGPM_quantum-Degenerate Gases for Precision Measurements
EUROCORES_EUROQUASAR_1.Call_QuDeGPM_quantum-Degenerate Gases for Precision Measurements
Wissenschaftsdisziplinen
Physik, Astronomie (100%)
Keywords
-
Microscopic atom optics,
Magnet Field Microscope,
Atom Chips,
Atom Interferometry
Atom interference has been applied in many pioneering experiments ranging from fundamental studies to precision measurements. The techniques of laser cooling and trapping have allowed the realization of bright sources of macroscopic matter waves. The central goal of the Collaborative Research Project QuDeGPM is to build on this expertise and use interference of quantum degenerate macroscopic matter waves for a new generation of precision measurements. Two sets of applications are envisioned: (1) Precision determination of fundamental constants and inertial forces in free space, and (2) Interferometers for trapped atoms close to the surface as a microscope for highly sensitive measurements of surface forces on m length scale. To achieve the ultimate sensitivity we will engineer the interactions between the atoms and create non-classical matter-wave quantum states to beat the standard quantum measurement limit. Ultracold degenerate quantum gases with their inherent coherence and narrow spread in space and momentum promise to be the ideal starting point for precision matter wave interference experiments, similar to lasers for light optics. In contrast to light, atoms interact with each other, and the physics of degenerate quantum gases is in many cases dominated by these interactions. This can be an advantage, allowing tricks from non-linear optics like squeezing to boost sensitivity, and a disadvantage, resulting in additional dephasing due to uncontrolled collisional phase shifts. We will exploit recent advances in controlling these interactions by Feshbach resonances to pick out the advantages and to suppress the disadvantages caused by the interactions. The project is organized along the main objectives of (i) performing precision atom interferometry with quantum degenerate gases, (ii) using quantum degenerate gases for precision surface probing, and (iii) exploring, realizing, and testing novel measurement schemes with non-classical matter wave states.
Cold clouds of neutral gases containing a few thousands to a few million atoms and cooled down to a few billionths of degrees above absolute zero (-273.15C) may one day replace lasers in precision measurement devices. Atom interference has already been applied in many pioneering experiments ranging from fundamental studies to precision measurements. The central goal of our research in the framework of the Collaborative Research Project QuDeGPM was to develop an interferometer for trapped atoms to study potentials close to surfaces. An interferometer for trapped atoms consists of a beam splitter which separates a single cloud into two, a measurement time where the coherently split cloud is held and the interaction can shift the phase between the two trapped atomic ensembles. Finally the two clouds are recombined and the relative phase is read by observing the interference. The core of our research project was to investigate each of these steps and implement them on an atom chip, a micro-engineered integrated device used to manipulate the atom clouds. We started by developing a novel detector for atoms that allows is to count every single atom in a time of flight experiment. We then studied experimentally the intrinsic coherence properties of ultracold Bose-Einstein condensates (BEC). This proved that for the elongated clouds we will use for the interferometer they possess coherence properties similar to those of lasers, but their multi mode character, which most probably stems from the interaction between the atoms, persists down to colder temperatures then expected. We then investigated the splitting process itself, both theoretically and in experiment. Using optimal control techniques we studied the splitting protocols with the focus on best interferometer performance. In experiment we were able to demonstrate number squeezing during splitting, a prerequisite to improve interferometer performance. This led to the development of a fully integrated Mach-Zehnder interferometer using a 1d BEC. The performance of the trapped atom interferometer should allow significantly more sensitive measurements of surface potentials as compared to our previous magnetic field microscope experiments. In a parallel study we investigated the intrinsic de-phasing effects which limits the phase accumulation time in an interferometer. Interestingly the system does not decay to the expected thermal equilibrium but to a pre-thermalized state.
- Technische Universität Wien - 100%
- Hanns-Christoph Nägerl, Universität Innsbruck , nationale:r Kooperationspartner:in
- Klaus Von Klitzing, Max Planck-Institut für Festkörperforschung - Deutschland
- Luis Santos, Universität Hannover - Deutschland
- Claus Zimmermann, Universität Tübingen - Deutschland
- Philippe Bouyer, Université de Bordeaux - Frankreich
- Giovanni Modugno, European Laboratory for Non Linear Spectroscopy - Italien
- Simon Cornish, Durham University - Vereinigtes Königreich
- Jacob Dunningham, University of Sussex - Vereinigtes Königreich
Research Output
- 1713 Zitationen
- 19 Publikationen
-
2012
Titel Hanbury Brown and Twiss correlations across the Bose–Einstein condensation threshold DOI 10.1038/nphys2212 Typ Journal Article Autor Perrin A Journal Nature Physics Seiten 195-198 Link Publikation -
2012
Titel Relaxation and Prethermalization in an Isolated Quantum System DOI 10.1126/science.1224953 Typ Journal Article Autor Gring M Journal Science Seiten 1318-1322 Link Publikation -
2011
Titel Atom chip fabrication. Typ Book Chapter Autor "Atom Chips" -
2011
Titel Dephasing in coherently split quasicondensates DOI 10.1103/physreva.83.023618 Typ Journal Article Autor Stimming H Journal Physical Review A Seiten 023618 Link Publikation -
2011
Titel Mach-Zehnder interferometry with interacting trapped Bose-Einstein condensates DOI 10.1103/physreva.84.023619 Typ Journal Article Autor Grond J Journal Physical Review A Seiten 023619 Link Publikation -
2011
Titel Absorption imaging of ultracold atoms on atom chips. DOI 10.1364/oe.19.008471 Typ Journal Article Autor Smith D Journal Optics express Seiten 8471-85 Link Publikation -
2011
Titel Interferometry with Bose-Einstein Condensates on Atom Chips. Typ Book Chapter Autor "Atom Chips" -
2011
Titel The dynamics and prethermalization of one-dimensional quantum systems probed through the full distributions of quantum noise DOI 10.1088/1367-2630/13/7/073018 Typ Journal Article Autor Kitagawa T Journal New Journal of Physics Seiten 073018 Link Publikation -
2010
Titel Atom interferometry with trapped Bose–Einstein condensates: impact of atom–atom interactions DOI 10.1088/1367-2630/12/6/065036 Typ Journal Article Autor Grond J Journal New Journal of Physics Seiten 065036 Link Publikation -
2010
Titel Ramsey Interference in One-Dimensional Systems: The Full Distribution Function of Fringe Contrast as a Probe of Many-Body Dynamics DOI 10.1103/physrevlett.104.255302 Typ Journal Article Autor Kitagawa T Journal Physical Review Letters Seiten 255302 Link Publikation -
2009
Titel Optimal control of number squeezing in trapped Bose-Einstein condensates DOI 10.1103/physreva.80.053625 Typ Journal Article Autor Grond J Journal Physical Review A Seiten 053625 Link Publikation -
2008
Titel Dephasing in two decoupled one-dimensional Bose-Einstein condensates and the subexponential decay of the interwell coherence DOI 10.1140/epjb/e2008-00421-5 Typ Journal Article Autor Mazets I Journal The European Physical Journal B Seiten 335-339 -
2010
Titel Two-point density correlations of quasicondensates in free expansion DOI 10.1103/physreva.81.031610 Typ Journal Article Autor Manz S Journal Physical Review A Seiten 031610 -
2009
Titel Single-particle-sensitive imaging of freely propagating ultracold atoms DOI 10.1088/1367-2630/11/10/103039 Typ Journal Article Autor Bücker R Journal New Journal of Physics Seiten 103039 Link Publikation -
2009
Titel Optimizing atom interferometry on atom chips DOI 10.1002/prop.200900094 Typ Journal Article Autor Hohenester U Journal Fortschritte der Physik Seiten 1121-1132 -
2009
Titel Materiewellen auf dem Chip. Typ Journal Article Autor Schmiedmayer Hj -
2011
Titel Two-Point Phase Correlations of a One-Dimensional Bosonic Josephson Junction DOI 10.1103/physrevlett.106.020407 Typ Journal Article Autor Betz T Journal Physical Review Letters Seiten 020407 Link Publikation -
2011
Titel Integrated circuits for matter waves DOI 10.1103/physics.4.37 Typ Journal Article Autor Schmiedmayer J Journal Physics Seiten 37 Link Publikation -
2011
Titel Embracing Quantum Metrology with Wide Arms DOI 10.1103/physics.4.74 Typ Journal Article Autor Schmiedmayer J Journal Physics Seiten 74 Link Publikation