Ableitungsfreie Regulierungsverfahren zum Filtern und Verstärken
Derivative Free Regularization for Filtering and Enhancing
Wissenschaftsdisziplinen
Informatik (20%); Mathematik (80%)
Keywords
-
Image Decomposition,
Variational Methods,
G-norm,
Texture Enhancement,
Negative Sobolev Seminorms,
Image Restauration
Filtern von Rauschen und Detektieren von Mustern in Daten sind zentrale Themen der medizinischen Bildverarbeitung. Zu den Standardmethoden zählen variationelle Regularisierungsverfahren. Bei solchen Verfahren spaltet man ein Bild in zwei oder mehrere Komponenten (z.B. glattes Bild, Textur und Rauschen), indem man ein geeignetes Energiefunktional minimiert. Die Funktionale bestehen meistens aus der Summe eines Vergleichsterms, der die Daten mit einem geglätteten Bild vergleicht, und Regularisierungsterme, die für die Glattheit des Bildes zuständig sind. Um Kanten in Daten (Bildern) zu erhalten, verwendet man häufig die Totalvariation als Regularisierungsterm und den quadratischen Mittelwert der Differenz als Vergleichsterm. Y. Meyer schlug die G-Norm als Vergleichsterm vor, da sich diese Norm besonders gut eignet um Texturen in Bildern zu erfassen. Leider ist die Berechnung dieser speziellen Norm nicht ganz einfach, daher sind wir bestrebt, texturerfassende Normen so zu approximieren, dass ihre Berechnung vereinfacht wird. Die Grundidee basiert auf auf den Resultaten von J. Bourgain, H. Brezis, P. Mironescu und J. Davila. Diese zeigten, dass Sobolev Seminormen und die Totalvariation als Grenzwert von singulären, gradientenfreien Doppelintegralen formuliert werden können. Nun stellt sich die Frage ob man auch die dualen Normen der Sobolevräume bzw. des BV-Raumes auf diese Weise darstellen kann. Ziel ist es daher die Approximationseigenschaften auf die dualen Normen, welche Texturen erfassen, zu erweitern. Diese theoretischen Überlegungen dienen dazu neue numerische Verfahren für Texturverstärkung und Filterung von Rauschen zu entwickeln. Auf diese Weise wollen wir den berühmten Algorithmus von Chambolle erweitern und auf effiziente Weise duale Normen numerisch berechnen. Wir interessieren uns für Konvergenz, Existenz und Charakterisierung von minimierenden Elementen solcher Verfahren.
- Universitat Pompeu Fabra - 100%
- Universität Klagenfurt - 100%
Research Output
- 4 Zitationen
- 4 Publikationen
-
2014
Titel Distance Measures and Applications to Multimodal Variational Imaging DOI 10.1007/978-3-642-27795-5_4-5 Typ Book Chapter Autor Pöschl? C Verlag Springer Nature Seiten 1-27 -
2014
Titel Finite-dimensional approximation of convex regularization via hexagonal pixel grids DOI 10.1080/00036811.2014.958998 Typ Journal Article Autor Kirisits C Journal Applicable Analysis Seiten 612-636 -
2015
Titel Distance Measures and Applications to Multimodal Variational Imaging DOI 10.1007/978-1-4939-0790-8_4 Typ Book Chapter Autor Pöschl C Verlag Springer Nature Seiten 125-155 -
2011
Titel Distance Measures and Applications to Multi-Modal Variational Imaging DOI 10.1007/978-0-387-92920-0_4 Typ Book Chapter Autor Pöschl C Verlag Springer Nature Seiten 111-138