Stickstoff und Phosphor dotierte einwandige Nanoröhren
Nitrogen and phosphorus doped single-wall carbon nanotubes
Wissenschaftsdisziplinen
Andere Naturwissenschaften (25%); Nanotechnologie (25%); Physik, Astronomie (50%)
Keywords
-
Carbon nanotubes,
Nitrogen Doping,
Phosphorus Doping,
Spectroscopy,
Materials Processing,
DFT
The main objective of the NIPHOTUBES project is to develop a significantly enhanced understanding of the atomic bonding of nitrogen and phosphorus dopants in single-walled carbon nanotubes. While nanotubes possess several exceptional and unique properties, their electronic nature depends on their precise structure, which still cannot be controlled despite immense research efforts. This presents a problem for applications, since nanotubes of a specific type are typically required. Another way to control their properties is by substitutional doping with other chemical elements. However, such research has been hampered by the limited availability of doped materials and the difficulty of conclusively identifying the dopant sites. The work in this project is distributed into four Work Packages (WP): Characterization, Modeling, Transport, and Dissemination. The Characterization WP utilizes a comprehensive array of complementary spectroscopic and microscopic methods, for which the chosen host site is ideally suited. The experimental activities are supported by advanced computational work in the Modeling WP, giving the research multidisciplinary appeal. Apart from his expertise on the topic, major part of the materials synthesis will be accomplished prior to the beginning of the project at the present research site of the applicant. He will have full access to the required synthesis systems and thus avoid the need to build additional reactors at the research site. Pre-existing international collaborations of the applicant are also key to achieving the goals of the Transport WP, and will contribute significantly to the Characterization and Modeling WPs. The rigorous multimodal characterization of the materials will allow elucidating the influence of doping on the nanotubes` properties, particularly on quantum transport. The results will set higher standards for the study of all doped nanocarbon materials, leading to enhanced control over their production. The significance for metrology will be considerable, helping set a more robust scientific foundation for substitutional doping and paving the way to its wider adoption. Phosphorus doping has rich untapped potential and potential for scientific breakthroughs. If theoretical predictions of exclusively n-type doping can be realized, P-doped SWCNTs would enable the production of natively n-type nanotube transistors.
Im Laufe des Projekts NiPhoTubes wurden bedeutende Erkenntnisse über die Bindung von Phosphor in einwandigen Kohlenstoff-Nanoröhrchen gewonnen. Obwohl sie einzigartige Eigenschaften besitzen, hängen deren elektronische Eigenschaften stark von der genauen Struktur ab. Daher erfordern zukünftige Anwendungen eine sehr genaue Auswahl an spezifischen Nanoröhrchen. Ein anderer Ansatz, die Eigenschaften von Nanoröhrchen zu verändern besteht in gezieltem Dotieren. Dabei werden einige Kohlenstoffatome durch andere Elemente ersetzt. Bisher sind solche Verfahren jedoch durch eine sehr limitierte Anzahl an verfügbaren, dotierbaren Materialien und die eindeutige Identifizierung der Gitterplätze, an denen die Fremdatome sitzen, begrenzt. Ein Schwerpunkt dieses Projekt war daher, erstmaligst, die Bindung von Phosphor an speziell gereinigten Proben zu messen und somit die Möglichkeit, Phosphor als geeigneten Dopanten zu verwenden, zu zeigen. Weiters konnten wir direkt einzelne Phosphor Atome in Graphene sichtbar machen. Abschließend und ergänzend zu den vereinbarten Projektzielen, konnten wir zeigen, dass mittels fokussiertem Elektronenstrahl Fremdatome im Graphenegitter gezielt bewegt werden können. Dies stellt sich womöglich als weitrechender Beitrag dar, die Grenzen des technologisch Realisierbaren in der Wissenschaft zu erweitern.
- Universität Wien - 100%
- Esko I. Kauppinen, Aalto University Helsinki - Finnland
- Aravind Vijayaraghavan, University of Manchester - Vereinigtes Königreich
Research Output
- 799 Zitationen
- 14 Publikationen
- 1 Weitere Förderungen
-
2016
Titel Spectromicroscopy of C60 and azafullerene C59N: Identifying surface adsorbed water DOI 10.1038/srep35605 Typ Journal Article Autor Erbahar D Journal Scientific Reports Seiten 35605 Link Publikation -
2015
Titel On the bonding environment of phosphorus in purified doped single-walled carbon nanotubes DOI 10.1016/j.carbon.2014.09.028 Typ Journal Article Autor Ruiz-Soria G Journal Carbon Seiten 91-95 Link Publikation -
2015
Titel Uncovering the ultimate performance of single-walled carbon nanotube films as transparent conductors DOI 10.1063/1.4932942 Typ Journal Article Autor Mustonen K Journal Applied Physics Letters Seiten 143113 Link Publikation -
2015
Titel Calculation of the graphene C 1s core level binding energy DOI 10.1103/physrevb.91.081401 Typ Journal Article Autor Susi T Journal Physical Review B Seiten 081401 Link Publikation -
2015
Titel Gas phase synthesis of non-bundled, small diameter single-walled carbon nanotubes with near-armchair chiralities DOI 10.1063/1.4926415 Typ Journal Article Autor Mustonen K Journal Applied Physics Letters Seiten 013106 Link Publikation -
2015
Titel Doping Carbon Nanomaterials with Heteroatoms DOI 10.1002/9781118980989.ch4 Typ Book Chapter Autor Susi T Verlag Wiley Seiten 133-161 -
2016
Titel On the bonding environment of phosphorus in purified doped single-walled carbon nanotubes DOI 10.48550/arxiv.1601.07481 Typ Preprint Autor Ruiz-Soria G -
2016
Titel Uncovering the ultimate performance of single-walled carbon nanotube films as transparent conductors DOI 10.48550/arxiv.1601.08050 Typ Preprint Autor Mustonen K -
2016
Titel Gas phase synthesis of non-bundled, small diameter single-walled carbon nanotubes with near-armchair chiralities DOI 10.48550/arxiv.1601.08040 Typ Preprint Autor Mustonen K -
2014
Titel Silicon–Carbon Bond Inversions Driven by 60-keV Electrons in Graphene DOI 10.1103/physrevlett.113.115501 Typ Journal Article Autor Susi T Journal Physical Review Letters Seiten 115501 Link Publikation -
2014
Titel Core level binding energies of functionalized and defective graphene DOI 10.3762/bjnano.5.12 Typ Journal Article Autor Susi T Journal Beilstein Journal of Nanotechnology Seiten 121-132 Link Publikation -
2015
Titel X-ray photoelectron spectroscopy of graphitic carbon nanomaterials doped with heteroatoms DOI 10.3762/bjnano.6.17 Typ Journal Article Autor Susi T Journal Beilstein Journal of Nanotechnology Seiten 177-192 Link Publikation -
2014
Titel Silicon-carbon bond inversions driven by 60 keV electrons in graphene DOI 10.48550/arxiv.1407.4274 Typ Preprint Autor Susi T -
2014
Titel Calculation of the graphene C 1$\textit{s}$ core level binding energy DOI 10.48550/arxiv.1411.3874 Typ Preprint Autor Susi T
-
2015
Titel Heteroatom quantum corrals and nanoplasmonics in graphene (HeQuCoG) Typ Research grant (including intramural programme) Förderbeginn 2015