• Zum Inhalt springen (Accesskey 1)
  • Zur Suche springen (Accesskey 7)
FWF — Österreichischer Wissenschaftsfonds
  • Zur Übersichtsseite Entdecken

    • Forschungsradar
      • Historisches Forschungsradar 1974–1994
    • Entdeckungen
      • Emmanuelle Charpentier
      • Adrian Constantin
      • Monika Henzinger
      • Ferenc Krausz
      • Wolfgang Lutz
      • Walter Pohl
      • Christa Schleper
      • Elly Tanaka
      • Anton Zeilinger
    • Impact Stories
      • Verena Gassner
      • Wolfgang Lechner
      • Georg Winter
    • scilog-Magazin
    • Austrian Science Awards
      • FWF-Wittgenstein-Preise
      • FWF-ASTRA-Preise
      • FWF-START-Preise
      • Auszeichnungsfeier
    • excellent=austria
      • Clusters of Excellence
      • Emerging Fields
    • Im Fokus
      • 40 Jahre Erwin-Schrödinger-Programm
      • Quantum Austria
      • Spezialforschungsbereiche
    • Dialog und Diskussion
      • think.beyond Summit
      • Am Puls
      • Was die Welt zusammenhält
      • FWF Women’s Circle
      • Science Lectures
    • Wissenstransfer-Events
    • E-Book Library
  • Zur Übersichtsseite Fördern

    • Förderportfolio
      • excellent=austria
        • Clusters of Excellence
        • Emerging Fields
      • Projekte
        • Einzelprojekte
        • Einzelprojekte International
        • Klinische Forschung
        • 1000 Ideen
        • Entwicklung und Erschließung der Künste
        • FWF-Wittgenstein-Preis
      • Karrieren
        • ESPRIT
        • FWF-ASTRA-Preise
        • Erwin Schrödinger
        • doc.funds
        • doc.funds.connect
      • Kooperationen
        • Spezialforschungsgruppen
        • Spezialforschungsbereiche
        • Forschungsgruppen
        • International – Multilaterale Initiativen
        • #ConnectingMinds
      • Kommunikation
        • Top Citizen Science
        • Wissenschaftskommunikation
        • Buchpublikationen
        • Digitale Publikationen
        • Open-Access-Pauschale
      • Themenförderungen
        • AI Mission Austria
        • Belmont Forum
        • ERA-NET HERA
        • ERA-NET NORFACE
        • ERA-NET QuantERA
        • ERA-NET TRANSCAN
        • Ersatzmethoden für Tierversuche
        • Europäische Partnerschaft Biodiversa+
        • Europäische Partnerschaft BrainHealth
        • Europäische Partnerschaft ERA4Health
        • Europäische Partnerschaft ERDERA
        • Europäische Partnerschaft EUPAHW
        • Europäische Partnerschaft FutureFoodS
        • Europäische Partnerschaft OHAMR
        • Europäische Partnerschaft PerMed
        • Europäische Partnerschaft Water4All
        • Gottfried-und-Vera-Weiss-Preis
        • netidee SCIENCE
        • Projekte der Herzfelder-Stiftung
        • Quantum Austria
        • Rückenwind-Förderbonus
        • WE&ME Award
        • Zero Emissions Award
      • Länderkooperationen
        • Belgien/Flandern
        • Deutschland
        • Frankreich
        • Italien/Südtirol
        • Japan
        • Luxemburg
        • Polen
        • Schweiz
        • Slowenien
        • Taiwan
        • Tirol–Südtirol–Trentino
        • Tschechien
        • Ungarn
    • Schritt für Schritt
      • Förderung finden
      • Antrag einreichen
      • Internationales Peer-Review
      • Förderentscheidung
      • Projekt durchführen
      • Projekt beenden
      • Weitere Informationen
        • Integrität und Ethik
        • Inklusion
        • Antragstellung aus dem Ausland
        • Personalkosten
        • PROFI
        • Projektendberichte
        • Projektendberichtsumfrage
    • FAQ
      • Projektphase PROFI
      • Projektphase Ad personam
      • Auslaufende Programme
        • Elise Richter und Elise Richter PEEK
        • FWF-START-Preise
  • Zur Übersichtsseite Über uns

    • Leitbild
    • FWF-Film
    • Werte
    • Zahlen und Daten
    • Jahresbericht
    • Aufgaben und Aktivitäten
      • Forschungsförderung
        • Matching-Funds-Förderungen
      • Internationale Kooperationen
      • Studien und Publikationen
      • Chancengleichheit und Diversität
        • Ziele und Prinzipien
        • Maßnahmen
        • Bias-Sensibilisierung in der Begutachtung
        • Begriffe und Definitionen
        • Karriere in der Spitzenforschung
      • Open Science
        • Open-Access-Policy
          • Open-Access-Policy für begutachtete Publikationen
          • Open-Access-Policy für begutachtete Buchpublikationen
          • Open-Access-Policy für Forschungsdaten
        • Forschungsdatenmanagement
        • Citizen Science
        • Open-Science-Infrastrukturen
        • Open-Science-Förderung
      • Evaluierungen und Qualitätssicherung
      • Wissenschaftliche Integrität
      • Wissenschaftskommunikation
      • Philanthropie
      • Nachhaltigkeit
    • Geschichte
    • Gesetzliche Grundlagen
    • Organisation
      • Gremien
        • Präsidium
        • Aufsichtsrat
        • Delegiertenversammlung
        • Kuratorium
        • Jurys
      • Geschäftsstelle
    • Arbeiten im FWF
  • Zur Übersichtsseite Aktuelles

    • News
    • Presse
      • Logos
    • Eventkalender
      • Veranstaltung eintragen
      • FWF-Infoveranstaltungen
    • Jobbörse
      • Job eintragen
    • Newsletter
  • Entdecken, 
    worauf es
    ankommt.

    FWF-Newsletter Presse-Newsletter Kalender-Newsletter Job-Newsletter scilog-Newsletter

    SOCIAL MEDIA

    • LinkedIn, externe URL, öffnet sich in einem neuen Fenster
    • , externe URL, öffnet sich in einem neuen Fenster
    • Facebook, externe URL, öffnet sich in einem neuen Fenster
    • Instagram, externe URL, öffnet sich in einem neuen Fenster
    • YouTube, externe URL, öffnet sich in einem neuen Fenster

    SCILOG

    • Scilog — Das Wissenschaftsmagazin des Österreichischen Wissenschaftsfonds (FWF)
  • elane-Login, externe URL, öffnet sich in einem neuen Fenster
  • Scilog externe URL, öffnet sich in einem neuen Fenster
  • en Switch to English

  

Direkte Lösung kinetischer Gleichungen für Halbleiter

Direct Solution Methods for Kinetic Semiconductor Equations

Ferdinand Schürrer (ORCID: )
  • Grant-DOI 10.55776/P17438
  • Förderprogramm Einzelprojekte
  • Status beendet
  • Projektbeginn 01.10.2004
  • Projektende 30.11.2007
  • Bewilligungssumme 138.312 €
  • Projekt-Website

Wissenschaftsdisziplinen

Mathematik (30%); Physik, Astronomie (70%)

Keywords

    Boltzmann transport equation, Semiconductor Devices, Electron-Phonon Kinetics, Deterministic Solution Methods, Bipolar Transport, Two-Dimensional Electron Gas (2Deg)

Abstract Endbericht

Der Ladungstransport in Halbleiterbauelementen als Teile hochintegrierter Schaltkreise wird mesoskopisch mit Boltzmanngleichungen beschrieben. Es ist das Ziel dieses Projektes, neue deterministische Methoden zur Lösung dieser Gleichungen zu entwickeln, die auf einer Partition des Impulsraumes und einer Darstellung der gesuchten Verteilungsfunktionen in den erhaltenen Zellen durch Formfunktionen beruhen. Gemäß der Idee der gewichteten Residuen wird mittels Gewichtsfunktionen die korrekte Bilanzierung makroskopischer Größen gewährleistet. Erste Tests zeigen, dass diese Methode in wesentlich kürzerer Rechenzeit als die Monte Carlo Verfahren rauschfreie Resultate liefert, die sehr gut mit Messdaten übereinstimmen. Neu gegenüber anderen direkten Lösungsverfahren ist, dass wir die reale Bandstruktur und alle relevanten Wechselwirkun-gen, wie z.B. die Ladungsträger- Störstellen-Phononen Wechselwirkung und die Ladungsträger-Ladungsträger Streuung in unseren Transportgleichungen erfassen, was uns zwingt, unsere Technik auf Streuprozesse mit zwei ein- und zwei auslaufenden Teilchen zu erweitern. Eine physikalisch sehr detaillierte Beschreibung des Halbleiters ermöglicht uns, bipolare Transistoren zu simulieren and High-Field Effekte und Break-Down Phänomene in MOSFETs und verwandten Bauelementen zu untersuchen. Auch soll der Einfluss von Minoritätswechselwirkungstermen in Ergänzung zu den dominierenden Streumechanismen auf die Dynamik des Boltzmann-Poisson-Systems geklärt werden. Einen weiteren Schwerpunkt dieses Projekts stellt die Simulation zweidimensionaler Systeme dar, die sich durch starke Quanteneffekte auszeichnen. Besondere Bedeutung kommt diesen niedrigdimensionalen Systemen bei der Untersuchung des Ladungstransports an Grenz-flächen verschiedener Materialien zu, welche z. B. die elektronischen Eigenschaften modulations-dotierter III-V FETs und High-Mobility Transistoren maßgeblich bestimmen. Die Optimierung der Lösungsverfahren bezüglich der Rechenzeit wird über eine dynamische Anpassung der räumlichen und zeitlichen Auflösung an die auftretenden raum-zeitlichen Variationen der gesuchten Funktionen erfolgen. WENO Schemata hoher Ordnung werden die Verwendung verhältnismäßig grober Diskretisierungen gestatten. Unter Ausnutzung des hyperbolischen Charakters der kinetischen Gleichungen werden auch Streamline-Diffusion Finite-Element Methoden Verwendung finden und bei starken elektrischen Feldern Charakteristikenmethoden zum Einsatz kommen. Aufgrund unserer Erfahrungen sind wir überzeugt, dass sich die Simulation von Halbleiterbauelementen mit Hilfe unserer direkten Lösungsverfahren sehr effizient durchführen lassen wird.

Der Ladungstransport in Halbleiterbauelementen als Teile hochintegrierter Schaltkreise wird mesoskopisch mit Boltzmanngleichungen beschrieben. Es ist das Ziel dieses Projektes, neue deterministische Methoden zur Lösung dieser Gleichungen zu entwickeln, die auf einer Partition des Impulsraumes und einer Darstellung der gesuchten Verteilungsfunktionen in den erhaltenen Zellen durch Formfunktionen beruhen. Gemäß der Idee der gewichteten Residuen wird mittels Gewichtsfunktionen die korrekte Bilanzierung makroskopischer Größen gewährleistet. Erste Tests zeigen, dass diese Methode in wesentlich kürzerer Rechenzeit als die Monte Carlo Verfahren rauschfreie Resultate liefert, die sehr gut mit Messdaten übereinstimmen. Neu gegenüber anderen direkten Lösungsverfahren ist, dass wir die reale Bandstruktur und alle relevanten Wechselwirkun-gen, wie z.B. die Ladungsträger- Störstellen-Phononen Wechselwirkung und die Ladungsträger-Ladungsträger Streuung in unseren Transportgleichungen erfassen, was uns zwingt, unsere Technik auf Streuprozesse mit zwei ein- und zwei auslaufenden Teilchen zu erweitern. Eine physikalisch sehr detaillierte Beschreibung des Halbleiters ermöglicht uns, bipolare Transistoren zu simulieren and High-Field Effekte und Break-Down Phänomene in MOSFETs und verwandten Bauelementen zu untersuchen. Auch soll der Einfluss von Minoritätswechselwirkungstermen in Ergänzung zu den dominierenden Streumechanismen auf die Dynamik des Boltzmann-Poisson-Systems geklärt werden. Einen weiteren Schwerpunkt dieses Projekts stellt die Simulation zweidimensionaler Systeme dar, die sich durch starke Quanteneffekte auszeichnen. Besondere Bedeutung kommt diesen niedrigdimensionalen Systemen bei der Untersuchung des Ladungstransports an Grenz-flächen verschiedener Materialien zu, welche z. B. die elektronischen Eigenschaften modulations-dotierter III-V FETs und High-Mobility Transistoren maßgeblich bestimmen. Die Optimierung der Lösungsverfahren bezüglich der Rechenzeit wird über eine dynamische Anpassung der räumlichen und zeitlichen Auflösung an die auftretenden raum-zeitlichen Variationen der gesuchten Funktionen erfolgen. WENO Schemata hoher Ordnung werden die Verwendung verhältnismäßig grober Diskretisierungen gestatten. Unter Ausnutzung des hyperbolischen Charakters der kinetischen Gleichungen werden auch Streamline-Diffusion Finite-Element Methoden Verwendung finden und bei starken elektrischen Feldern Charakteristikenmethoden zum Einsatz kommen. Aufgrund unserer Erfahrungen sind wir überzeugt, dass sich die Simulation von Halbleiterbauelementen mit Hilfe unserer direkten Lösungsverfahren sehr effizient durchführen lassen wird.

Forschungsstätte(n)
  • Technische Universität Graz - 100%
Internationale Projektbeteiligte
  • Alberto Rossani, Politecnico Torino - Italien
  • Giampiero Spiga, Universita di Parma - Italien
  • Gian Luca Caraffini, Universita di Parma - Italien
  • Maria Groppi, Universita di Parma - Italien
  • Angelo Marcello Anile, University of Catania - Italien
  • Armando Majorana, University of Catania - Italien
  • Giovanni Russo, University of Catania - Italien
  • Orazio Muscato, University of Catania - Italien
  • Vittorio Romano, University of Catania - Italien

Research Output

  • 61 Zitationen
  • 4 Publikationen
Publikationen
  • 2006
    Titel Hot phonon effects on the high-field transport in metallic carbon nanotubes
    DOI 10.1103/physrevb.74.165409
    Typ Journal Article
    Autor Auer C
    Journal Physical Review B
    Seiten 165409
  • 2006
    Titel A kinetic approach to tunnelling at Schottky contacts
    DOI 10.1088/0268-1242/21/4/004
    Typ Journal Article
    Autor Domaingo A
    Journal Semiconductor Science and Technology
    Seiten 429
  • 2006
    Titel A direct multigroup-WENO solver for the 2D non-stationary Boltzmann–Poisson system for GaAs devices: GaAs-MESFET
    DOI 10.1016/j.jcp.2005.08.003
    Typ Journal Article
    Autor Galler M
    Journal Journal of Computational Physics
    Seiten 778-797
  • 2005
    Titel A deterministic solver for the transport of the AlGaN/GaN 2D electron gas including hot-phonon and degeneracy effects
    DOI 10.1016/j.jcp.2005.04.021
    Typ Journal Article
    Autor Galler M
    Journal Journal of Computational Physics
    Seiten 519-534

Entdecken, 
worauf es
ankommt.

Newsletter

FWF-Newsletter Presse-Newsletter Kalender-Newsletter Job-Newsletter scilog-Newsletter

Kontakt

Österreichischer Wissenschaftsfonds FWF
Georg-Coch-Platz 2
(Eingang Wiesingerstraße 4)
1010 Wien

office(at)fwf.ac.at
+43 1 505 67 40

Allgemeines

  • Jobbörse
  • Arbeiten im FWF
  • Presse
  • Philanthropie
  • scilog
  • Geschäftsstelle
  • Social Media Directory
  • LinkedIn, externe URL, öffnet sich in einem neuen Fenster
  • , externe URL, öffnet sich in einem neuen Fenster
  • Facebook, externe URL, öffnet sich in einem neuen Fenster
  • Instagram, externe URL, öffnet sich in einem neuen Fenster
  • YouTube, externe URL, öffnet sich in einem neuen Fenster
  • Cookies
  • Hinweisgeber:innensystem
  • Barrierefreiheitserklärung
  • Datenschutz
  • Impressum
  • IFG-Formular
  • Social Media Directory
  • © Österreichischer Wissenschaftsfonds FWF
© Österreichischer Wissenschaftsfonds FWF