Trockenstress-Monitoring von Getreide durch Fernerkundung
Crop Drought Stress Monitoring by Remote Sensing
Wissenschaftsdisziplinen
Geowissenschaften (35%); Land- und Forstwirtschaft, Fischerei (20%); Umweltingenieurwesen, Angewandte Geowissenschaften (45%)
Keywords
-
Drought Stress,
Remote Sensing,
Agriculture,
Monitoring
Extreme Temperaturen und Wassermangel verursachen Trockenstress an landwirtschaftlichen Kulturen. Weltweit werden die Auswirkungen von Trockenstress auf wichtige Feldfrüchten untersucht und Methoden zur Überwachung und zur Früherkennung von Trockenstress und anderen Stressfaktoren untersucht. Damit soll der gezielte. Einsatz agrotechnischer Maßnahmen wie Fruchtwechsel, Düngung, Bodenbearbeitung und Bewässerungsplanung unterstützt werden, um Ernteeinbußen zu verhindern. Ein weiterer Aspekt sind mögliche Auswirkungen der globalen Erwärmung auf die landwirtschaftliche Produktion, die sich zu einem der Hauptthemen der Forschung auf dem Gebiet das Klimawandels entwickeln. Erdbeobachtung von Satelliten aus ermöglicht die rationelle Überwachung des Zustands landwirtschaftlicher Kulturen über große Flächen. lü jüngster Zeit wurden neue Sensorsysteme entwickelt und in Erdumlauf gebracht, die neue Möglichkeiten auch für das Monitoring von Trockenstress landwirtschaftlicher Kulturen eröffnen. Die wesentlichen Merkreale dieser neuen optischen Sensoren sind hohe spektrale Auflösung (kleine Bandbreiten bis 10 nm herunter, eine große Anzahl von Spektralkanälen - bis zu einigen hundert, was im Prinzip Spektroskopie vom Satelliten aus ermöglicht), hohe räumliche Auflösung (Bildelementgrößen am Boden bis 60 cm herunter), und hohe zeitliche Auflösung -(bis zu täglicher Aufnahmemöglichkeit jedes Punktes der Erdoberfläche). Das Ziel dieses Projekts ist es, unter Ausnützung der neuen Möglichkeiten optischer Fernerkundung und der synergistischen Effekte der unterschiedlich Sensortypen Fernerkundungsmethoden zur Erkennung und zur Überwachung von Trockenstress an landwirtschaftlichen Kulturen zu entwickeln. Dazu werden physikalische Vegetationsmodelle angepasst und verbessert, die den Zusammenhang zwischen der Trockenstressintensität und Reflexionseigenschaften von Pflanzenbeständen quantitativ beschreiben. Methoden zur Analyse von Fernerkundungsbilddaten unter Verwendung dieser Vegetationsmodelle werden entwickelt. Dabei werden sowohl reflektierte als auch emittierte (thermale) Infrarotstrahlung berücksichtigt. Da es keine Sensoren gibt, die gleichzeitig alle drei der oben angeführten Arten der hohen Auflösung (spektral, räumlich und zeitlich) erfüllen, kommt der Kombination von Daten unterschiedlicher Sensoren besondere Bedeutung zu (image information fusion). Die Methodenwerden für ausgewählte Fruchtarten (Weizen und Mais) unter Anbaubedingungen in Österreich und Deutschland entwickelt und getestet.
Extreme Temperaturen und Wassermangel verursachen Trockenstress an landwirtschaftlichen Kulturen. Weltweit werden die Auswirkungen von Trockenstress auf wichtige Feldfrüchten untersucht und Methoden zur Überwachung und zur Früherkennung von Trockenstress und anderen Stressfaktoren untersucht. Damit soll der gezielte. Einsatz agrotechnischer Maßnahmen wie Fruchtwechsel, Düngung, Bodenbearbeitung und Bewässerungsplanung unterstützt werden, um Ernteeinbußen zu verhindern. Ein weiterer Aspekt sind mögliche Auswirkungen der globalen Erwärmung auf die landwirtschaftliche Produktion, die sich zu einem der Hauptthemen der Forschung auf dem Gebiet das Klimawandels entwickeln. Erdbeobachtung von Satelliten aus ermöglicht die rationelle Überwachung des Zustands landwirtschaftlicher Kulturen über große Flächen. lü jüngster Zeit wurden neue Sensorsysteme entwickelt und in Erdumlauf gebracht, die neue Möglichkeiten auch für das Monitoring von Trockenstress landwirtschaftlicher Kulturen eröffnen. Die wesentlichen Merkreale dieser neuen optischen Sensoren sind hohe spektrale Auflösung (kleine Bandbreiten bis 10 nm herunter, eine große Anzahl von Spektralkanälen - bis zu einigen hundert, was im Prinzip Spektroskopie vom Satelliten aus ermöglicht), hohe räumliche Auflösung (Bildelementgrößen am Boden bis 60 cm herunter), und hohe zeitliche Auflösung -(bis zu täglicher Aufnahmemöglichkeit jedes Punktes der Erdoberfläche). Das Ziel dieses Projekts ist es, unter Ausnützung der neuen Möglichkeiten optischer Fernerkundung und der synergistischen Effekte der unterschiedlich Sensortypen Fernerkundungsmethoden zur Erkennung und zur Überwachung von Trockenstress an landwirtschaftlichen Kulturen zu entwickeln. Dazu werden physikalische Vegetationsmodelle angepasst und verbessert, die den Zusammenhang zwischen der Trockenstressintensität und Reflexionseigenschaften von Pflanzenbeständen quantitativ beschreiben. Methoden zur Analyse von Fernerkundungsbilddaten unter Verwendung dieser Vegetationsmodelle werden entwickelt. Dabei werden sowohl reflektierte als auch emittierte (thermale) Infrarotstrahlung berücksichtigt. Da es keine Sensoren gibt, die gleichzeitig alle drei der oben angeführten Arten der hohen Auflösung (spektral, räumlich und zeitlich) erfüllen, kommt der Kombination von Daten unterschiedlicher Sensoren besondere Bedeutung zu (image information fusion). Die Methodenwerden für ausgewählte Fruchtarten (Weizen und Mais) unter Anbaubedingungen in Österreich und Deutschland entwickelt und getestet.
- Universität Wien - 35%
- Universität für Bodenkultur Wien - 65%
- Wolfgang Postl, Universität Wien , assoziierte:r Forschungspartner:in
- Annette Menzel, Technische Universität München - Deutschland
Research Output
- 179 Zitationen
- 4 Publikationen
-
2009
Titel Downscaling time series of MERIS full resolution data to monitor vegetation seasonal dynamics DOI 10.1016/j.rse.2009.04.011 Typ Journal Article Autor Zurita-Milla R Journal Remote Sensing of Environment Seiten 1874-1885 -
2008
Titel Validation of forward and inverse modes of a homogeneous canopy reflectance model DOI 10.1080/01431160701736463 Typ Journal Article Autor Weihs P Journal International Journal of Remote Sensing Seiten 1317-1338 -
2008
Titel Plant growth monitoring and potential drought risk assessment by means of Earth observation data DOI 10.1080/01431160802036268 Typ Journal Article Autor Richter K Journal International Journal of Remote Sensing Seiten 4943-4960 -
2008
Titel Estimation of sensor point spread function by spatial subpixel analysis DOI 10.1080/01431160701395310 Typ Journal Article Autor Kaiser G Journal International Journal of Remote Sensing Seiten 2137-2155